Skip to main content

Advertisement

Log in

Palaeoenvironmental study of the Palaeotethys Ocean: the Givetian-Frasnian boundary of a shallow-marine environment using combined facies analysis and geochemistry (Zefreh Section/Central Iran)

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

The Zefreh section in central Iran represents a carbonate ramp succession with a general shallow-marine palaeoenvironment. This section represents most of the Bahram Formation (Givetian to at least Middle falsiovalis Zone) and consists of a very heterogeneous succession of medium- to coarse-grained sandstones, skeletal pack- to grainstones with local biostromes, massive or laminated dolostones, and shales. Microfacies analysis allowed the discrimination of 12 microfacies reflecting supratidal to open marine palaeoenvironments. The shallow-marine environment was investigated using facies analysis and geochemical proxies. Redox conditions in the Zefreh section appear to be primarily oxic and support the facies and sedimentological results. The provenance of the Zefreh sediments using La, Sc, Zr, and Th indicates that they are most likely derived from continental arc volcanics which is consistent with the preliminary tectonic interpretations. Conodonts and brachiopods were used for establishing the biostratigraphical framework. The lack of important zonal index taxa of the widely applied conodont standard zonation requires the application of an alternative shallow-marine conodont zonation. Based on conodont and brachiopod data, the Zefreh section covers sediments ranging from the upper Givetian to lower Frasnian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Adhamian, A. (2003). Middle Devonian (Givetian) conodont biostratigraphy in the Soh area, north of Esfahan, Iran. Courier Forschungsinstitut Senckenberg, 245, 183–193.

    Google Scholar 

  • Ainardi, R., & Champetier, Y. (1976). Processus de formation d’intraclastes par dessiccation en milieu margino-littoral; exemple dans le ‘Purbeckien’ du Jura. Bulletin des Recherche, Elf Exploration Production, 22, 1–11.

    Google Scholar 

  • Amini, Z. Z., Adabi, M. H., Burrett, C. F., & Quilty, P. G. (2004). Bryozoan distribution and growth form associations as a tool in environmental interpretation, Tasmania, Australia. Sedimentary Geology, 167(1–2), 1–15.

    Google Scholar 

  • Bahrami, A., Corradini, C., & Yazdi, M. (2011a). Upper Devonian-Lower Carboniferous conodont biostratigraphy in the Shotori Range, Tabas area, Central-East Iran Microplate. Bollettino della Società Paleontologia Italiana, 50(1), 35–53.

    Google Scholar 

  • Bahrami, A., Gholamalian, H., Corradini, C., & Yazdi, M. (2011b). Upper Devonian conodont biostratigraphy of Shams Abad section, Kerman Province, Iran. Rivista Italiana di Paleontologia e Stratigrafia, 117(2), 199–209.

    Google Scholar 

  • Bahrami, A., Boncheva, I., Königshof, P., Yazdi, M., & Ebrahimi Khan-Abadi, A. (2014). Conodonts of the Mississippian/Pennsylvanian boundary interval in Central Iran. Journal of Asian Earth Sciences, 92, 187–200.

    Google Scholar 

  • Bahrami, A., Königshof, P., Boncheva, I., Tabatabaei, A. S., Yazdi, M., & Safari, Z. (2015). Middle Devonian (Givetian) conodonts from the northern margin of Gondwana (Soh and Natanz regions, north-west Isfahan, Central Iran): biostratigraphy and palaeoenvironmental implications. Palaeobiodiversity and Palaeoenvironments, 95(4), 555–577. doi:10.1007/s12549-015-0205-0.

    Article  Google Scholar 

  • Berberian, M., & King, G. C. P. (1981). Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18, 210–265.

    Google Scholar 

  • Bhatia, M. R., & Crook, K. A. W. (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92(2), 181–193.

    Google Scholar 

  • Boggs, S., Jr. (2012). Principles of sedimentology and stratigraphy (5th edition) (pp. 1–600). New Jersey: Prentice Hall.

    Google Scholar 

  • Bond, D. P., & Wignall, P. B. (2010). Pyrite framboid study of marine Permian–Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. Geological Society of America Bulletin, 122(7–8), 1265–1279.

    Google Scholar 

  • Bond, D. P., Zatoń, M., Wignall, P. B., & Marynowski, L. (2013). Evidence for shallow‐water ‘Upper Kellwasser’ anoxia in the Frasnian–Famennian reefs of Alberta, Canada. Lethaia, 46(3), 355–368.

    Google Scholar 

  • Branson, E. B., & Mehl, M. G. (1938). The conodont genus Icriodus and its stratigraphic distribution. Journal of Paleontology, 12, 156–166.

    Google Scholar 

  • Brett, C.E., Baird, G.C., Bartholomew, A.J., DeSantis, M.K., & Ver Straaten, C.A. (2011). Sequence stratigraphy and a revised sea-level curve for the Middle Devonian of eastern North America. In: Brett, C.E., Schindler, E., & Königshof, P. (Eds.) Sea-level cyclicity, climate change, and bioevents in Middle Devonian marine and terrestrial environments. Palaeogeography, Palaeoclimatology, Palaeoecology, 304(1–2), 21–53.

  • Brice, D. (1999). New Upper Devonian rhynchonellid and spiriferid brachiopod taxa from eastern Iran (Kerman Province) and central Iran (Soh region). Annales de la Société géologique du Nord, T.7, (2ème série), 71–78.

  • Brice, D., Yazdi, M., Torabi, H., & Maleki, M. (2006) Devonian brachiopods from the Zefreh section (Central Iran). Annales de la Société géologique du Nord, T.13, (2ème série), 141–155.

  • Bryant, W. L. (1921). The Genesee conodonts. Buffalo Society of Natural Sciences Bulletin, 13, 1–59.

    Google Scholar 

  • Buggisch, W., & Joachimski, M. (2006). Carbon isotope stratigraphy of the Devonian of Central and Southern Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 240(1), 68–88.

    Google Scholar 

  • Bultynck, P. (1987). Pelagic and neritic conodont successions from the Givetian of pre-Sahara Morocco and the Ardennes. Bulletin van het Koninklijk Belgisch Instituut voor Natuurwetenschappen, Aardwetenschappen, 57, 149–181.

    Google Scholar 

  • Bultynck, P. (2007) Couvinian. Geologica Belgica, 9(1/2), 147–150

  • Bultynck, P., & Gouwy, S. (2008). Reference sections for the Middle Givetian Substage. Subcommission on Devonian Stratigraphy, Newsletter, 23, 21–26.

    Google Scholar 

  • Carmichael, S. K., Waters, J. A., Suttner, T. S., Kido, E., & DeReuil, A. A. (2014). A new model for the Kellwasser Anoxia Events (Late Devonian): shallow water anoxia in an open oceanic setting in the Central Asian Orogenic belt. Palaeogeography, Palaeoclimatology, Palaeoecology, 399, 394–403.

    Google Scholar 

  • Carmichael, S. K., Waters, J. A., Batchelor, C. J., Coleman, D., Suttner, T. J., Kido, E., Moore, L. M., & Chadimova, L. (2016). Climate instability and tipping points in the Late Devonian: detection of the Hangenberg Event in an open oceanic island arc in the Central Asian Orogenic Belt. Gondwana Research, 32, 213–231.

    Google Scholar 

  • Carpentier, M., Weis, D., & Chauvel, C. (2013). Large U loss during weathering of upper continental crust: the sedimentary record. Chemical Geology, 340, 91–104.

    Google Scholar 

  • Clausen, C. D., Weddige, K., & Ziegler, W. (1993). Devonian of the Rhenish Massif. Newsletter Subcommission on Devonian Stratigraphy, 10, 18–19.

    Google Scholar 

  • Cocks, L.R.M., & García-Alcalde, J.L. (2000). Strophomenidina. In: Brice, D., Carls, P., Cocks, L.R.M., Copper, P., García-Alcalde, J.L., Godefroid, J., & Racheboeuf, P.R. Brachiopoda. In: Bultynck, P. (ed.) Subcommission on Devonian Stratigraphy. Fossil groups important for boundary definition. Courier Forschungsinstitut Senckenberg, 220, 77.

  • Copper, P. (2002). Silurian and Devonian reefs: 80 million years of global greenhouse between two ice ages. In: Kiessling, W., Flügel, E & Golonka, J. Phanerozoic reef patterns. SEPM Special Publications, 72, 181–238.

  • Cornell, S. R., Brett, C. E., & Sumrall, C. D. (2003). Palaeoecology and taphonomy of an edrioasteroid-dominated hardground association from tentaculitid limestones in the Early Devonian of New York: a Palaeozoic Rocky Peritidal Community. Palaios, 18, 212–224.

    Google Scholar 

  • Davoudzadeh, M., & Schmidt, K. (1982). Zur Trias des Iran. Geologische Rundschau, 71, 1021–1039.

    Google Scholar 

  • Dunham, R.J. (1962). Classification of carbonate rocks according to depositional texture. In: Hamm, W.E. (ed.) Classification of carbonate rocks: a symposium arranged by the Research Committee of the American Association of Petroleum Geologists, Tulsa, 1, 108–121.

  • Embry, A., & Klovan, J. (1972). Absolute water depth limits of Late Devonian paleoecological zones. Geologische Rundschau, 61, 672–686.

    Google Scholar 

  • Ernst, A., Königshof, P., Taylor, P. D., & Bohaty, J. (2011). Microhabitat complexity—an example from Middle Devonian bryozoans-rich sediments in the Blankenheim Syncline (northern Eifel, Rheinisches Schiefergebirge). Palaeobiodivisity and Palaeoenvironments, 91(4), 257–284. doi:10.1007/s12549-011-0060-6.

    Google Scholar 

  • Ernst, A., Königshof, P., Bahrami, A., Yazdi, M., & Boncheva, I. (2017). A Late Devonian (Frasnian) bryozoan fauna from Central Iran. In B. Mottequin, L. Slavik and P. Königshof (Eds.) Climate change and biodiversity patterns in the mid-Palaeozoic. Palaeobiodiversity and Palaeoenvironments, 97(X) Doi : [XXX will be supplemented in proof version, when Doi-number is known].

  • Fisher, D. C. (1966). Small conical shells of uncertain affinity. In R. C. Moore (Ed.), Treatise on invertebrate palaeontology (pp. W98–W143). Bolder: Geological Society of America.

  • Flügel, E. (2004). Microfacies of carbonate rocks: analysis, interpretation and application (p. 976). Berlin: Springer.

    Google Scholar 

  • Flügel, E., & Kiessling, W. (2002). Patterns of Phanerozoic reef crises. In: W. Kiessling, E. Flügel, J. Golonka (Eds.) Phanerozoic reef patterns SEPM Special Publication, 72, 691–733.

  • Fürsich, F. T. (1974). Ichnogenus Rhizocorallium. Paläontologische Zeitschrift, 48, 16–28.

    Google Scholar 

  • Gaboreau, S., Beaufort, D., Vieillard, P., Patrier, P., & Bruneton, P. (2005). Aluminum phosphate–sulfate minerals associated with Proterozoic unconformity-type uranium deposits in the East Alligator River Uranium Field, Northern Territories. Australia: The Canadian Mineralogist, 43(2), 813–827.

    Google Scholar 

  • Gholamalian, H. (2003). Age-implication of Late Devonian conodonts from the Chah-Riseh area, northeast of Esfahan, central Iran. Courier Forschungsinstitut Senckenberg, 245, 201–207.

    Google Scholar 

  • Gholamalian, H. (2005). New data on the Famennian conodonts from Esfahan area, central Iran. Iranian International Journal of Sciences, 6(1), 27–45.

    Google Scholar 

  • Gholamalian, H. (2007). Conodont biostratigraphy of the Frasnian-Famennian boundary in the Esfahan and Tabas areas, central Iran. Geology Quarterly, 51, 453–476.

    Google Scholar 

  • Gourvennec, R. (2006). Upper Devonian Brachiopods from Eastern Taurus (Turkey). Geologica Croatica, 59(1), 1–17.

    Google Scholar 

  • Han, Y. (1987). Study on Upper Devonian Frasnian/Famennian boundary in Maanshan, Zhongping, Xiangzhou, Guanxi. Bulletin of the Chinese Academy of Geological Sciences, 17, 171–194.

    Google Scholar 

  • Huddle, J. W. (1934). Conodonts from the New Albany Shale of Indiana. Bulletin of American Paleontology, 21, 186–323.

    Google Scholar 

  • Joachimski, M. M., Breisig, S., Buggisch, W., Mawson, R., Gereke, M., Morrow, J. R., Day, J., & Weddige, K. (2009). Devonian climate and reef evolution: insights from oxygen isotopes in apatite. Earth and Planet Science Letters, 284, 599–609.

    Google Scholar 

  • Johnson, J. G., Klapper, G., & Sandberg, C. A. (1985). Devonian eustatic fluctuations in Euramerica. Geological Society of America Bulletin, 69, 567–587.

    Google Scholar 

  • Kiessling, W. (2008). Sampling-standardized expansion and collapse of reef building in the Phanerozoic. Fossil Record, 11(1), 7–18.

    Google Scholar 

  • Klapper, G. (1985). Sequence in conodont genus Ancyrodella in Lower asymmetricus Zone (earliest Frasnian, Upper Devonian) of the Montagne Noire. France: Palaeontographica Abteilung A, 188, 19–34.

    Google Scholar 

  • Klapper, G., & Johnson, J. G. (1990). Revision of the Middle Devonian conodont zones. Journal of Paleontology, 64(6), 902–941.

    Google Scholar 

  • Klapper, G., & Kirchgasser, W. T. (2016). Frasnian Late Devonian conodont biostratigraphy in New York: graphic correlation and taxonomy. Journal of Paleontology. doi:10.1017/jpa.2015.70.

    Article  Google Scholar 

  • Klapper, G., & Lane, H. R. (1985). Upper Devonian (Frasnian) conodonts of the Polygnathus biofacies, N.W.T., Canada. Journal of Paleontology, 59, 904–951.

    Google Scholar 

  • Klapper, G., & Ziegler, W. (1979). Devonian conodont biostratigraphy. Special Paper on Palaeontology, 23, 199–224.

    Google Scholar 

  • Königshof, P., Da Silva, A.C., Suttner, T.J., Kido, E., Waters, J., Carmichael, S.K., Jansen, U., Pas, D., & Spassov, S. (2016). Shallow water facies setting around the Kacak Event—a multidisziplinary approach. In: Becker, R.T., Königshof, P., & Brett C.E. (Eds.) Devonian climate, sea level and evolutionary events. Geological Society London, Special Publication, 423 (171–199). doi: 10.1144/SP423.4.

    Google Scholar 

  • Kowal-Linka, M., & Bodzioch, A. (2011). Sedimentological implications of an unusual form of the trace fossil Rhizocorallium from the Lower Muschelkalk (Middle Triassic). S. Poland. Facies, 57, 695–703.

  • Little, S. H., Vance, D., Lyons, T. W., & McManus, J. (2015). Controls on trace metal authigenic enrichment in reducing sediments: insights from modern oxygen-deficient settings. American Journal of Science, 315(2), 77–119.

    Google Scholar 

  • Lukasik, J. J., & James, N. P. (2003). Deepening-upward subtidal cycles, Murray basin, south Australia. Journal Sedimentary Research, 73, 653–671.

    Google Scholar 

  • Mángano, M.G., Buatois, L.A. (2004a). Reconstructing early phanerozoic intertidal ecosystems: ichnology of the Cambrian Campanario Formation in northwest Argentina. In: Webby, B.D., Mángano, M.G., Buatois, L.A. (Eds.), Trace fossils in evolutionary palaeoecology. Fossils & Strata, 51, 17–38.

  • Mángano, M.G., Buatois, L.A. (2004b). Ichnology of carboniferous tide-influenced environments and tidal flat variability in the North American Midcontinent. In: McIlroy, D. (Ed.), The application of ichnology to palaeoenvironmental and stratigraphic analysis: Geological Society Special Publication, 228, 157–178.

  • McComas, M.R. (1963). Productive core analysis characteristics of carbonate rocks in the Four Corners area. Shelf carbonates of the Paradox basin: Four Corners Geological Society, Symposium, 4th Field Conference, 149–156.

  • Motaghi, K., Tatar, M., Priestley, K., Romanelli, F., Doglioni, C., & Panza, G. F. (2015). The deep structure of the Iranian Plateau. Gondwana Research, 28(1), 407–418.

    Google Scholar 

  • Narkiewicz, K. (2011). Biostratygrafia konodontowa Dewonu Ṥrodkowego obszaru Radomsko-Lubelskiego. Prace Panstwowego Instytutu Geologicznego, 196, 147–192.

    Google Scholar 

  • Narkiewicz, K., & Bultynck, P. (2007). Conodont biostratigraphy of shallow marine Givetian deposits from the Radom-Lublin area, SE Poland. Geology Quarterly, 51(4), 419–442.

    Google Scholar 

  • Narkiewicz, K., & Bultynck, P. (2010). The Upper Givetian (Middle Devonian) subterminus conodont zone in North America, Europe, and North Africa. Journal of Paleontology, 84(4), 588–625.

    Google Scholar 

  • Narkiewicz, K., & Bultynck, P. (2011). Biostratygrafia konodontowa dewonu górnego Lubelszczyzny. Prace Pañstwowego Instytutu Geologicznego, 196, 193–254.

    Google Scholar 

  • Paulus, B., Struve, W., & Wolfart, R. (1963). Chimaerothyris n.g. (Spiriferacea) aus dem Eifelium der Eifel. Senckenbergiana lethaea, 44(6), 459–497.

  • Pearce, J. A., Harris, N. B., & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4), 956–983.

    Google Scholar 

  • Piper, D. Z., & Calvert, S. E. (2009). A marine biogeochemical perspective on black shale deposition. Earth-Science Reviews, 95(1–2), 63–96.

    Google Scholar 

  • Reineck, H. E., & Singh, I. B. (1980). Depositional sedimentary environments (2nd ed., pp. 1–549). Berlin: Springer Verlag.

    Google Scholar 

  • Rigaux, E. (1872). Notes pour servir à la géologie du Boulonnais. Description de quelques brachiopodes du terrain Dévonien de Ferques. Mémoires de la Société Academique de l’Arrondissment de Boulogne-sur-Mer, 5, 1–16.

    Google Scholar 

  • Sandberg, C. A., & Dreesen, R. (1984). Late Devonian icriodontid biofacies models and alternative shallow-water conodont zonation. Geological Society of America, Special Paper, 196, 143–178.

    Google Scholar 

  • Sartenaer, P. (1985). The stratigraphic significance of rhynchonellid genera at the Frasnian-Famennian boundary. Courier Forschungsinstitut Senckenberg, 75, 319–329.

    Google Scholar 

  • Scotese, C.R. (2001). Atlas of earth-history. Paleogeography, Vol. 1. Paleomap Project, Arlington, Texas, 52 pp.

  • Soffel, H. C., & Förster, H. G. (1984). Polar wander path of the Central-East-Iran Microplate including new results. Neues Jahrbuch Geologie und Paläontologie Abhandlungen, 168(2/3), 165–172.

    Google Scholar 

  • Soffel, H. C., Davoudzadeh, M., Rolf, C., & Schmidt, S. (1996). New palaeomagnetic data from Central Iran and a Triassic palaeoreconstruction. Geologische Rundschau, 85, 293–302.

    Google Scholar 

  • Stauffer, C. R. (1938). Conodonts of the Olentangy Shale. Journal of Paleontology, 12, 411–443.

    Google Scholar 

  • Stauffer, C. R. (1940). Conodonts from the Devonian and associated clays of Minnesota. Journal of Paleontology, 14(2), 417–435.

    Google Scholar 

  • Stöcklin, J. (1968). Structural history and tectonics of Iran: a review. The American Association of Petroleum Geologists Bulletin, 52, 1229–1258.

    Google Scholar 

  • Stöcklin, J. (1974). Possible ancient continental margins in Iran. In C. A. Burk & C. L. Drake (Eds.), The geology of continental margins (pp. 873–887). Berlin: Springer.

    Google Scholar 

  • Tribovillard, N., Algeo, T. J., Lyons, T., & Riboulleau, A. (2006). Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology, 232(1–2), 12–32.

    Google Scholar 

  • Tucker, M. E., & Wright, V. P. (1990). Carbonate sedimentology (p. 482). Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Vail, P. R., Mitchum, R. M.J., & Thomson, S. (1977). Seismic stratigraphy and global changes of sea level. Part 4: Global cycles of relative changes of sea-level. In: C.E. Payton (Ed.). Seismic stratigraphy—applications to hydrocarbon exploration. The American Association of Petroleum Geologists, Memoire, 26, 83–47.

  • Vanuxem, L. (1842). Geology of New York. Part 3, comprising the survey of the third geological district. Natural History of New York 4 (3). D. Appleton & Co, 306 pp.; New York.

  • von Buch, L. (1834). Über Terebrateln, mit einem Versuch, sie zu classificiren und zu beschreiben. Abhandlungen der Königlichen Akademie der Wissenschaften, physikalische Klasse, für, 1833, 1–124.

    Google Scholar 

  • Wacey, D., Kilburn, M. R., Saunders, M., Cliff, J. B., Kong, C., Liu, A. G., Matthews, J. J., & Brasier, M. D. (2015). Uncovering framboidal pyrite biogenicity using nano-scale CNorg mapping. Geology, 43(1), 27–30.

    Google Scholar 

  • Wang, P., Huang, Y., Wang, C., Feng, Z., & Huang, Q. (2013). Pyrite morphology in the first member of the Late Cretaceous Qingshankou Formation, Songliao Basin, Northeast China. Palaeogeography, Palaeoclimatology, Palaeoecology, 385, 125–136.

    Google Scholar 

  • Weddige, K. (1984). Externally controlled late Paleozoic events of the Iran Plate. Neues Jahrbuch Geologie und Paläontologie Abhandlungen, 168, 278–286.

    Google Scholar 

  • Weddige, K., & Ziegler, W. (1976). The significance of Icriodus:Polygnathus ratios in limestones from the type Eifelian, Germany. Geological Association of Canada Special Paper, 15, 187–199.

    Google Scholar 

  • Weddige, K., & Ziegler, W. (1979). Evolutionary patterns in Middle Devonian conodont genera Polygnathus and Icriodus. Geologica et Palaeontologica, 13, 157–164.

    Google Scholar 

  • Wendt, J., Hayer, J., & Karimi Bavandpour, A. (1997). Stratigraphy and depositional environment of Devonian sediments in northeast and east-central Iran. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 206, 277–322.

    Google Scholar 

  • Wendt, J., Kaufmann, B., Belka, Z., Farsan, N., & Karimi Bavandpur, A. (2002). Devonian/Lower Carboniferous stratigraphy, facies patterns and palaeogeography of Iran. Part I. Southeastern Iran. Acta Geologica Polonica, 52, 129–168.

    Google Scholar 

  • Wendt, J., Kaufmann, B., Belka, Z., Farsan, N., & Karimi Bavandpur, A. (2005). Devonian/Lower Carboniferous stratigraphy, facies patterns and palaeogeography of Iran. Part II. Northern and central Iran. Acta Geologica Polonica, 55(1), 31–97.

    Google Scholar 

  • Wignall, P. B., & Myers, K. J. (1988). Interpreting benthic oxygen levels in mudrocks: a new approach. Geology, 16(5), 452–455.

    Google Scholar 

  • Wignall, P., & Newton, R. (1998). Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. American Journal of Science, 298(7), 537–552.

    Google Scholar 

  • Wilkin, R., Barnes, H., & Brantley, S. (1996). The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochimica et Cosmochimica Acta, 60(20), 3897–3912.

    Google Scholar 

  • Witzke, B. J., Ludvigson, G. V., & Day, J. (1996). Introduction: Paleozoic applications of sequence stratigraphy. Geological Society of America Special Papers, 1996(306), 1–6.

    Google Scholar 

  • Wright, J., Schrader, H., & Holser, W. T. (1987). Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochimica et Cosmochimica Acta, 51(3), 631–644.

    Google Scholar 

  • Yazdi, M. (1999). Late Devonian-Carboniferous conodonts from Eastern Iran. Rivista Italiana di Paleontologia e Stratigrafia, 105(2), 167–200.

    Google Scholar 

  • Yazdi, M., & Turner, S. (2000). Late Devonian and Carboniferous vertebrates from the Shishtu and Sardar Formations of the Shotori Range, Iran. In: Mawson, R., Talent, J.A., Long, J.A. (eds) Mid-Palaeozoic biota and biogeography. Records of the Western Australian Museum Supplement, 58, 223–240.

  • Yazdi, M., Ghobadipour, M., & Mawson, R. (2000). Late Devonian conodonts from the Chah-Riseh area, central Iran. Record of the Western Australian Museum Supplement, 58, 179–189.

    Google Scholar 

  • Youngquist, W. L. (1945). Upper Devonian conodonts from the Independence Shale (?) of Iowa. Journal of Paleontology, 19, 355–367.

    Google Scholar 

  • Youngquist, W. L. (1947). A new Upper Devonian conodont fauna from Iowa. Journal of Paleontology, 21(2), 95–112.

    Google Scholar 

  • Zahedi, M. (1973). Ètude gèologique de la règion de Soh (W de l’ Iran central). Geological Survey of Iran, Report, 27, 1–197.

    Google Scholar 

  • Ziegler, W., & Klapper, G. (1976). Systematic paleontology. In: W. Ziegler, G., Klapper, G., & Johnson, J.G. Redefinition and subdivision of the varcus-Zone (Conodonts, Middle-? Upper Devonian) in Europe and North America. Geologica et Palaeontologica, 10, 117–127.

  • Ziegler, W., & Klapper, G. (1982). The disparilis conodont Zone, the proposed level for the Middle-Upper Devonian boundary. Courier Forschungsinstitut Senckenberg, 55, 463–492.

    Google Scholar 

  • Ziegler, W., & Sandberg, C. A. (1990). The Late Devonian Standard Conodont Zonation. Courier Forschungsinstitut Senckenberg, 121, 1–115.

    Google Scholar 

Download references

Acknowledgements

The paper is a contribution to IGCP 596—Climate Change and Biodiversity Patterns in the Mid-Paleozoic (Early Devonian to Late Carboniferous). Funding by the first-author (P.K.) is acknowledged by the Deutsche Forschungsgemeinschaft (DFG Project KO-1622/16-1). We thank Bernard Mottequin (Brussels) and Carlton E. Brett (Cincinnati) for their constructive comments. Jana Anger (Senckenberg) is thanked for preparing thin sections and some figures. Ali Bahrami and Peter Königshof thank the University of Isfahan, IR Iran for financial and logistic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah K. Carmichael.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article is a contribution to the special issue “Climate change and biodiversity patterns in the mid-Palaeozoic”

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(CSV 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Königshof, P., Carmichael, S.K., Waters, J. et al. Palaeoenvironmental study of the Palaeotethys Ocean: the Givetian-Frasnian boundary of a shallow-marine environment using combined facies analysis and geochemistry (Zefreh Section/Central Iran). Palaeobio Palaeoenv 97, 517–540 (2017). https://doi.org/10.1007/s12549-016-0253-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12549-016-0253-0

Keywords

Navigation