Skip to main content

Advertisement

Log in

Linking modern-day relicts to a Miocene mangrove community of western Amazonia

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

The Amazon drainage basin is extremely biodiverse, yet the origins of this diversification remain much debated. One of the possible drivers of plant diversity are the marine incursions that reached Amazonia during the Miocene and connected western Amazonia with the Caribbean. In the Miocene, large parts of western Amazonia were covered by extensive wetlands that, during high eustatic episodes, were episodically colonised by coastal taxa such as mangroves. In this paper, we hypothesise that some of these mangrove community taxa could adapt to freshwater conditions enriching the modern plant composition of the Amazon drainage basin. To assess the past plant composition in the basin, we statistically analyse the palynological composition of two Miocene sections from western Amazonia that were especially rich in presumed mangrove pollen (Zonocostites ramonae). We identify the pollen taxa that coexisted with this community using clustering methods supported by Kendall’s W coefficient concordance analysis. Our results suggest that at least fourteen taxa are closely associated with Zonocostites ramonae (Cricotriporites guianensis, Deltoidospora adriennis, Psilabrevitricolporites devriesii, Psiladiporites redundantis, Psilamonocolpites amazonicus, P. rinconii, Psilatricolporites crassoexinatus, P. labiatus, P. operculatus, Psilatriporites corstanjei, Retitricolporites kaarsii, Rhoipites guianensis, Rhoipites hispidus, and Tetracolporopollenites transversalis). We also illustrate the pollen of this fossil mangrove, and some of its associated fossil taxa, using light microscopy (LM) and scanning electron microscopy (SEM), and we compare them with potential nearest living relatives (NLR). We found that pollen of the modern mangrove Rhizophora mangle is the NLR of Zonocostites ramonae. Of the three associated taxa, the best analogy is between Psilabrevitricolporites devriesii and Humiria balsamifera, the latter a taxon best known from the coastal restinga vegetation in Brazil and Surinam. Tentatively, we assign Forsteronia spp. as NLR for Cricotriporites guianensis, and we propose Euterpe sp. for Psilamonocolpites rinconii (but also Oenocarpus, Hyospathe, Prestoea, and Sabinaria are affine). Based on this study we propose that, at least for some fossil taxa of the Miocene mangrove environment, there are still NLR or relict species that occur in inland Amazonia and along the South American coastline. We thus conclude that the Amazonian flora, like riverine fauna such as the pink river dolphin (Inia) and selected fish taxa, carry an imprint of the Miocene coastal communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its Electronic Supplementary Material).

References

  • Antonelli, A., Nylander, J. A. A., Persson, C., & Sanmartín, I. (2009). Tracing the impact of the Andean uplift on Neotropical plant evolution. Proceedings of the National Academy of Sciences, 106, 9749–9754.

    Article  Google Scholar 

  • Bastos, M. d. N. d. C. (1988). Levantamento florístico em restinga arenosa litorânea na Ilha de Maiandeua-Pará. Boletim Museu Emílio Goeldi, Serie Botanica, 4(1), 159–173.

    Google Scholar 

  • Behling, H. (2011). Holocene environmental dynamics in coastal, eastern and central Amazonia and the role of the Atlantic sea-level change. Geographica Helvetica, 66, 208–216.

    Article  Google Scholar 

  • Behling, H., & da Costa, M. L. (2001). Holocene vegetational and coastal environmental changes from the Lago Crispim record in northeastern Pará State, eastern Amazonia. Review of Palaeobotany and Palynology, 114, 145–155.

    Article  Google Scholar 

  • Behling, H., Cohen, M. C. L., & Lara, R. J. (2001). Studies on Holocene mangrove ecosystem dynamics of the Bragança Peninsula in north-eastern Pará, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 167, 225–242.

    Article  Google Scholar 

  • Behling, H., Cohen, M. C. L., & Lara, R. J. (2004). Late Holocene mangrove dynamics of Marajó Island in Amazonia, northern Brazil. Vegetation History and Archaeobotany, 13. https://doi.org/10.1007/s00334-004-0031-1.

  • Bercovici, A., Hadley, A., & Villanueva-Amadoz, U. (2009). Improving depth of field resolution for palynological photomicrography. Paleontologia Electronica, 12, 1–12.

    Google Scholar 

  • Berger, U., Adams, M., Grimm, V., & Hildenbrandt, H. (2006). Modeling secondary succession of neotropical mangroves: Causes and consequences of growth reduction in pioneer species. Perspectives Plant Ecology Evolution Systematics, 7, 243–252.

    Article  Google Scholar 

  • Bernal, R., Bacon, C. D., Balslev, H., Hoorn, C., Bourlat, S. J., Tuomisto, H., Salamanca, S., Manen, M. T., Romero, I., Sepulchre, P., & Antonelli, A. (2019). Could coastal plants in western Amazonia be relicts of past marine incursions? Journal of Biogeography, 46, 1749–1759. https://doi.org/10.1111/jbi.13560.

    Article  Google Scholar 

  • Bertrand, R. (1983). Pollen from four common new world mangroves in Jamaica. Grana, 22, 147–151.

    Article  Google Scholar 

  • Bicudo, T. C., Sacek, V., de Almeida, R. P., Bates, J. M., & Ribas, C. C. (2019). Andean tectonics and mantle dynamics as a pervasive influence on Amazonian ecosystem. Scientific Reports, 9, 16879. https://doi.org/10.1038/s41598-019-53465-y.

    Article  Google Scholar 

  • Bloom, D. D., & Lovejoy, N. R. (2011). The biogeography of marine incursions in South America. In J. S. Albert & R. E. Reiss (Eds.), Historical biogeography of neotropical freshwater fishes (pp. 137–144). Berkeley: University of California Press.

    Chapter  Google Scholar 

  • Boonstra, M., Ramos, M. I. F., Lammertsma, E. I., Antoine, P. O., & Hoorn, C. (2015). Marine connections of Amazonia: Evidence from foraminifera and dinoflagellate cysts (early to middle Miocene, Colombia/Peru). Palaeogeography, Palaeoclimatology, Palaeoecology, 417, 176–194.

    Article  Google Scholar 

  • Borcard, D., Gillet, F., & Legendre, P. (2018). Numerical ecology with R. In R. Gentleman, K. Hornik, & G. Parmigiani (Eds.), Use R! (pp. 59–150). Cham: Springer International Publishing AG.

    Google Scholar 

  • Bove, C. P., & Melhem, T. S. (2000). Angiospermae, Humiriaceae Juss. In S. Nilsson & G. E. Ghazaly (Eds.), World pollen and spore Flora, 22 (pp. 1–35). Oxford: Taylor & Francis.

    Google Scholar 

  • Butler, R. A., & Laurance, W. (2009). Is oil palm the next emerging threat to the Amazon? Tropical Conservation Science, 2, 1–10. https://doi.org/10.1177/194008290900200102.

    Article  Google Scholar 

  • Calinski, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics, 3, 1–27.

    Google Scholar 

  • Chudnoff, M. (1984). Tropical timbers of the world, Agriculture handbook 607. Washington, DC: U.S. Forest Service: Department of Agriculture.

    Google Scholar 

  • Cohen, M. C. L., Souza Filho, P. W. M., Lara, R. J., Behling, H., & Angulo, R. J. (2005). A model of Holocene mangrove development and relative sea-level changes on the Bragança Peninsula (northern Brazil). Wetlands Ecology and Management, 13, 433–443. https://doi.org/10.1007/s11273-004-0413-2.

    Article  Google Scholar 

  • Cohen, M. C. L., Pessenda, L. C. R., Behling, H., de Fátima, D., França, M. C., & Guimarães, J. T. F. (2012). Holocene palaeoenvironmental history of the Amazonian mangrove belt. Quaternary Science Reviews, 55, 50–58. https://doi.org/10.1016/j.quascirev.2012.08.019.

    Article  Google Scholar 

  • Dueñas, H., (1986). Geologia y Palinologia de la Formación Cienaga de Oro, Región Caribe Colombiana. Boletin Geolologico Ingeominas, Publicacion Especial, Bogotá, 18, 51 pp.

  • Dransfield, J., Uhl, N. W., Asmussen, C. B., Baker, W. J., Harley, M. M., & Lewis, C. E. (2008). Genera Palmarum. The Evolution and Classification of Palms. Kew: Kew publishing, Royal Botanical Gardens.

    Google Scholar 

  • Eakin, C. M., Lithgow-Bertelloni, C., & Dávila, F. M. (2014). Influence of Peruvian flat-slab subduction dynamics on the evolution of western Amazonia, Earth Planet. Science Letters, 404, 250–260.

    Google Scholar 

  • Ellison, A. M., Farnsworth, E. J., & Merkt, R. E. (1999). Origins of mangrove ecosystem and the mangrove biodiversity anomaly. Global Ecology and Biogeography, 8, 95–115.

    Google Scholar 

  • Ferguson, D. K., & Harley, M. (1993). The significance of new and recent work on the pollen morphology of the Palmae. Kew Bulletin, 48, 205–243.

    Article  Google Scholar 

  • Ferguson, D. K., Zetter, R., & Paudayal, K. N. (2007). The need for the SEM in palaeopalynology. Comptes Rendus Palevol, 6, 423–430.

    Article  Google Scholar 

  • Ferreira, L. V., & Prance, G. T. (1998). Structure and species richness of low-diversity floodplain forest on the Rio Tapajós, Eastern Amazonia, Brazil. Biodiversity and Conservation, 7, 585–596.

    Article  Google Scholar 

  • Figueiredo, J., Hoorn, C., van der Ven, P., & Soares, E. (2009). Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin. Geology, 37, 619–622. https://doi.org/10.1130/G25567A.1.

    Article  Google Scholar 

  • França, M. C., Alves, I. G. C., Castro, D. F., Cohen, M. C. L., Rossetti, D. F., Pessenda, L. C. R., et al. (2015). A multi-proxy evidence for the transition from estuarine mangroves to deltaic freshwater marshes, Southern Brazil, due to climatic and sea-level changes during the late Holocene. Catena, 128, 155–166. https://doi.org/10.1016/j.catena.2015.02.005.

    Article  Google Scholar 

  • França, M. C., Pessenda, L. C. R., Cohen, M. C. L., de Azevedo, A. Q., Fontes, N. A., Silva, B. F., et al. (2018). Late-Holocene subtropical mangrove dynamics in response to climate change during the last millennium. The Holocene, 29(3), 445–456. https://doi.org/10.1177/0959683618816438.

    Article  Google Scholar 

  • Garzione, C. N., Hoke, G. D., Libarkin, J. C., Withers, S., MacFadden, B., Eiler, J., Ghosh, P., & Mulch, A. (2008). Rise of the Andes. Science, 320, 1304–1307.

    Article  Google Scholar 

  • Germeraad, J. H., Hopping, C. A., & Muller, J. (1968). Palynology of tertiary sediments from tropical areas. Review of Palaeobotany and Palynology, 6, 189–348. https://doi.org/10.1016/0034-6667(68)90051-1.

    Article  Google Scholar 

  • Ghosh, C., Hazra, L., Nag, S. N., Sil, S., Dutta, A., & Biswas, S. (2019). Allamanda cathartica Linn. Apocynaceae: A mini review. International Journal of Herbal Medicine, 7(4), 29–33.

    Google Scholar 

  • Gomez, A. A., Jaramillo, C. A., Parra, M., & Mora, A. (2009). Huesser horizon: A lake and a marine incursion in northwestern South America during the early Miocene. PALAIOS, 24, 199–210.

    Article  Google Scholar 

  • Gregory-Wodzicki, K. M. (2000). Uplift history of the central and northern Andes: A review. GSA Bulletin, 112(7), 1091–1105.

    Article  Google Scholar 

  • Halbritter, H., Ulrich, S., Grímsson, F., Weber, M., Zetter, R., Hesse, M., Buchner, R., Svojtka, M., & Frosch-Radivo, A. (2018). Illustrated pollen terminology. Cham: Springer International Publishing AG.

    Book  Google Scholar 

  • Hamilton, H., Caballero, S., Collins, A. G., & Brownell Jr., R. L. (2001). Evolution of river dolphins. Proceedings of the Royal Society B, 268, 549–556.

    Article  Google Scholar 

  • Hansen, B.F. (1985). A monographic revision of Forsteronia (Apocynaceae). Ph.D. dissertation. University of South Florida. U.S.A.

  • Harley, M., & Baker, W. J. (2001). Pollen aperture morphology in Arecaceae: Application within phylogenetic analyses, and a summary of record of palm-like pollen the fossil. Grana, 40(1–2), 45–77.

    Article  Google Scholar 

  • Herrera, F., Manchester, S. R., Jaramillo, C., MacFadden, B., & da Silva-Caminha, S. A. (2010). Phytogeographic history and phylogeny of the Humiriaceae. International Journal of Plant Sciences, 171, 392–408.

    Article  Google Scholar 

  • Hofmann, C. C. (2002). Pollen distribution in sub-recent sedimentary environments of the Orinoco Delta (Venezuela) — An actuo-palaeobotanical study. Review of Palaeobotany and Palynology, 119, 191–217.

    Article  Google Scholar 

  • Höfer, H., Wollscheid, E., & Gasnier, T. (1996). The relative abundance of Brotheas amazonicus (Chactidae, Scorpiones) in different habitat types of a Central Amazon rainforest. The Journal of Arachnology, 24, 34–38.

    Google Scholar 

  • Hoorn, C. (1993). Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: Results of a palynostratigraphic study. Palaeogography, Palaeoclimatology, Palaeoecology, 105, 267–309.

    Article  Google Scholar 

  • Hoorn, C. (1994a). An environmental reconstruction of the palaeo-Amazon River system (Middle-Late Miocene, NW Amazonia). Palaeogeography, Palaeoclimatology, Palaeoecology, 112, 187–238.

    Article  Google Scholar 

  • Hoorn, C. (1994b). Fluvial palaeoenvironments in the intracratonic Amazonas Basin (Early Miocene-early Middle Miocene, Colombia). Palaeogeography, Palaeoclimatology, Palaeoecology, 109, 1–54.

    Article  Google Scholar 

  • Hoorn, C. (2006). Mangrove forests and marine incursions in Neogene Amazonia (lower Apaporis River, Colombia). Palaios, 21, 197–209.

    Article  Google Scholar 

  • Hoorn, C., Guerrero, J., Sarmiento, G. A., & Lorente, M. A. (1995). Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology, 23, 237–240.

    Article  Google Scholar 

  • Hoorn, C., Wesselingh, F. P., ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., Sanmartin, I., Sanchez-Meseguer, A., Anderson, C. L., Figueiredo, J. P., Jaramillo, C., Riff, D., Negri, F. R., Hooghiemstra, H., Lundberg, J., Stadler, T., Sarkinen, T., & Antonelli, A. (2010a). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330, 927–931.

    Article  Google Scholar 

  • Hoorn, C., Wesselingh, F. P., Hovikoski, J., & Guerrero, J. (2010). The development of the Amazonian mega-wetland (Miocene; Brazil, Colombia, Peru, Bolivia). In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia, landscape and species evolution (pp. 123–142). Oxford: Wiley-Blackwell Publishing.

    Google Scholar 

  • Hoorn, C., Bogotá-A, R. G., Romero-Baez, M., Lammertsma, E. I., Flantua, S., Dantas, E. L., et al. (2017). The Amazon at sea: Onset and stages of the Amazon River from a marine record in the Foz do Amazonas Basin (Brazilian Equatorial Margin), with special reference to vegetation turnover in the Plio-Pleistocene. Global and Planetary Change, 153, 51–65. https://doi.org/10.1016/j.gloplacha.2017.02.005.

    Article  Google Scholar 

  • Horton, B. K. (2018). Sedimentary record of Andean mountain building. Earth Science Reviews, 178, 279–309.

    Article  Google Scholar 

  • Hovikoski, J., Wesselingh, F. P., Räsänen, M., Gingras, M., & Vonhof, H. B. (2010). Marine influence in Amazonia: Evidence from the geological record. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia, landscape and species evolution: A look into the past (pp. 143–161). Oxford: Wiley-Blackwell Publishing.

    Google Scholar 

  • Hurley, C. (2019). gclus: Clustering graphics. R package version 1.3.2. https://CRAN.R-project.org/package=gclus.

  • Jaramillo, C., & Dilcher, D. L. (2001). Middle Paleogene palynology of Central Colombia, South America: A study of pollen and spores from tropical latitudes. Palaeontographica Abteilung B, 258(4–6), 87–213.

    Article  Google Scholar 

  • Jaramillo, C., & Rueda, M. (2019). A Morphological Electronic Database of Cretaceous-Tertiary and Extant pollen and spores from Northern South America. In http://biogeodb.stri.si.edu/jaramillosdb/web/morphological/

  • Jaramillo, C., Hoorn, C., Silva, S. A. F., Leite, F., Herrera, F., Quiroz, L., et al. (2010). The origin of the modern Amazon rainforest. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia, landscape and species evolution (pp. 317–334). Oxford: Wiley.

    Google Scholar 

  • Jaramillo, C., Moreno, E., Ramírez, V., da Silva, S., de la Barrera, A., de la Barrera, A., Sánchez, C., Morón, S., Herrera, F., Escobar, J., Koll, R., Manchester, S. R., & Hoyos, N. (2014). Palynological record of the last 20 million years in Panama. In W. D. Stevens, O. M. Montiel, & P. Raven (Eds.) Paleobotany and Biogeography: a festschrift for Alan Graham in his 80th year (pp. 134–251). Missouri Botanical Garden Press.

  • Jaramillo, C., Romero, I., D’Apolito, C., Bayona, G., Duarte, E., Louwye, S., Escobar, J., Luque, J., Carrillo-Briceño, J. D., Zapata, V., Mora, A., Schouten, S., Zavada, M., Harrington, G., Ortiz, J., & Wesselingh, F. P. (2017). Miocene flooding events of western Amazonia. Science Advances, 3, e1601693. https://doi.org/10.5061/dryad.53m76.

    Article  Google Scholar 

  • Jimenez, L. C., Bogota, R. A., & Rangel-Ch, J. O. (2008). Atlas palinologico de la Amazonia colombiana - las familias mas ricas en especies. In J. O. Rangel-Ch (Ed.) Vegetación, paliniologia y paleoecologia de la amazonía colombiana. Bogotá: Universidad Nacional de Colombia-Instituto de Ciencias Naturales.

  • Juggins, S. (2017). rioja: Analysis of Quaternary Science Data, R package version (0.9-15.2). https://CRAN.R-project.org/package=rioja

  • Kern, A. K., Gross, M., Galeazzi, C. P., Pupim, F. N., Sawakuchi, A. O., Almeida, R. P., Piller, W. E., Kuhlmann, G. G., & Basei, M. A. S. (2020). Re-investigating Miocene age control and paleoenvironmental reconstructions in western Amazonia (northwestern Solimões Basin, Brazil). Palaeogeography, Palaeoclimatology, Palaeoecology, 545, 109652. https://doi.org/10.1016/j.palaeo.2020.109652.

    Article  Google Scholar 

  • Laurance, W., & Luizão, R. (2007). Driving a wedge into the Amazon. Nature, 448, 409–410.

    Article  Google Scholar 

  • Leidelmeyer, P. (1966). The Paleocene and lower Eocene pollen flora of Guyana. Leidse Geologische Mededelingen, 38(1), 49–57.

    Google Scholar 

  • Legendre, P. (2005). Species association: The Kendall coefficient of concordance revisited. Journal of Agricultural, Biological, and Environmental Statistics, 10, 226–245.

    Article  Google Scholar 

  • Legendre, P., & Blanchet, F. G. (2008). Species association. Edmonton: University of Alberta.

    Google Scholar 

  • Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia, 129, 271–280.

    Article  Google Scholar 

  • Legendre, P., & Legendre, L. (2012). Numerical ecology. Amsterdam: Elsevier Science BV.

    Google Scholar 

  • Lindeman, J. C. (1953). The vegetation of the coastal region of Surinam. Utrecht: Kemink.

    Google Scholar 

  • Linhares, A. P., Gaia, V. C. S., & Ramos, M. I. F. (2017). The significance of marine microfossils for paleoenvironmental reconstructions of the Solimões Formation (Miocene), Western Amazonia, Brazil. Journal of South American Earth Sciences, 79, 57–66.

    Article  Google Scholar 

  • Linhares, A. P., Ramos, M. I. F., Gaia, V. C. S., & Friaes, Y. S. (2019). Integrated biozonation based on palynology and ostracods from the Neogene of Solimões Basin, Brazil. Journal of South American Earth Sciences, 91, 57–70.

    Article  Google Scholar 

  • Lorente, M. A. (1986). Palynology and palynofacies of the upper Tertiary in Venezuela. Dissertationes Botanicae 99, pp. 225, Lehre: Lubrecht & Cramer Ltd.

  • Lovejoy, N. R., Bermingham, E., & Martin, A. P. (1998). Marine incursion into South America. Nature, 396, 421–422.

    Article  Google Scholar 

  • Lovejoy, N. R., Albert, J. S., & Crampton, W. G. R. (2006). Miocene marine incursions and marine/freshwater transitions: Evidence from Neotropical fishes. Journal of South American Earth Sciences, 21, 5–13.

    Article  Google Scholar 

  • Mao, L. M., Wang, D., Chen, J., & Zhong, C. (2008). Pollen morphology and polymorphism of Rhizophora apiculata Bl. (Rhizophoraceae). Acta Micropalaeontologica Sinica, 25(4), 393–403.

    Google Scholar 

  • Mao, L. M., Batten, D. J., Fujiki, T., Li, Z., Dai, L., & Weng, C. (2012). Key to mangrove pollen and spores of southern China: An aid to palynological interpretation of Quaternary deposits in the South China Sea. Review of Palaeobotany and Palynology, 176–177, 41–67.

    Article  Google Scholar 

  • Menezes, M. P. M., Berger, U., & Mehlig, U. (2008). Mangrove vegetation in Amazonia: A review of studies from the coast of Para and Maranhão States, north Brazil. Acta Amazonica, 38(3), 403–420.

    Article  Google Scholar 

  • Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G. S., & Wright, J. D. (2020). Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Science Advances, 6, eaaz1346.

    Article  Google Scholar 

  • Mohd-Arrabe, A.B., & Noraini, T. (2013). Pollen morphology of Rhizophora L. in Peninsular Malaysia. AIP Conference Proceedings, https://doi.org/10.1063/1.4858687.

  • Mora, A., Baby, P., Roddaz, M., Parra, M., Brusset, S., Hermoza, W., & Espurt, N. (2010). Tectonic history of the Andes and sub-Andean zones: Implications for the development of the Amazon drainage basin. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia, Landscape and Species Evolution (pp. 38–60). Oxford: Wiley.

    Google Scholar 

  • Morales, F. J. (2005). Estudios en las Apocynaceae Neotropicales XIX: La familia Apocynaceae (Rauvolfioideae, Apocynoideae) de Costa Rica. DARWINIANA, 43(1–4), 90–191.

    Google Scholar 

  • Muller, J., & Caratini, C. (1977). Pollen of Rhizophora (Rhizophoraceae) as a guide fossil. Pollen et Spores, XIX(3), 361–389.

  • Nores, M. (1999). An alternative hypothesis for the origin of Amazonian bird diversity. Journal of Biogeography, 26(3), 475–485.

    Article  Google Scholar 

  • Ochoa, D.P. (2007). Palinología de los depósitos fluviales de la sección Agua Negra e implicaciones en la geología del NW de la Cuenca Amazónica. Thesis. Universidad Industrial de Santander, Facultad de Ingenierías Físico-Químicas Escuela de Geología, Bucaramanga, Colombia. 66p.

  • Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al. (2019). vegan: Community Ecology Package. R package version, 2, 5–4 https://CRAN.R-project.org/package=vegan.

    Google Scholar 

  • Pal, N. R., Pal, K., Keller, J. M., & Bezdek, J. C. (2005). A possibilistic fuzzy c-means clustering algorithm. IEEE Transactions on Fuzzy Systems, 13, 517–530. https://doi.org/10.1109/TFUZZ.2004.840099.

    Article  Google Scholar 

  • Piller, W., & Gross, M. (2020). Aquatic ecosystems in Miocene western Amazonia – marine ingressions vs. salt leaching. EGU General Assembly. https://doi.org/10.5194/egusphere-egu2020-5483.

  • Punt, W., Hoen, P. P., Blackmodre, S., Nilsson, S., & Le Thomas, A. (2006). Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology, 143, 1–81.

    Article  Google Scholar 

  • Rao, C. R. (1995). A review of canonical coordinates and an alternative to correspondence analysis using Hellinger distance. QÜESTIIÓ, 19, 23–63.

    Google Scholar 

  • Roubik, D. W., & Moreno, J. E. (1991). Pollen and spores of Barro Colorado Island. St. Louis: Missouri Botanical Garden.

  • R Core Team. (2018). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing https://www.R-project.org/.

    Google Scholar 

  • Sacek, V. (2014). Drainage reversal of the Amazon River due to the coupling of surface and lithospheric processes. Earth and Planetary Science Letters, 401, 301–312. https://doi.org/10.1016/j.epsl.2014.06.022.

    Article  Google Scholar 

  • Salamanca, S., van Soelen, E. E., van Manen, M. L., Flantua, S. G. A., Ventura, R., Roddaz, M., et al. (2016). Amazon forest dynamics under changing abiotic conditions in the early Miocene (Colombian Amazonia). Journal of Biogeography, 43, 2424–2437. https://doi.org/10.1111/jbi.12769.

    Article  Google Scholar 

  • Shephard, G. E., Müller, R. D., Liu, L., & Gurnis, M. (2010). Miocene drainage reversal of the Amazon river driven by plate mantle interaction. Nature Geoscience, 3, 870–875.

    Article  Google Scholar 

  • Silva, F. H. M., & dos Santos, F. (2009). Pollen morphology of the shrub and arboreal flora of mangroves of northeastern Brazil. Wetlands Ecology and Management, 17, 243–443.

    Article  Google Scholar 

  • Silva, R. M., Mehlig, U., Moreira, J., & Machado, M. P. (2010). The coastal restinga vegetation of Pará, Brazilian Amazon: A synthesis. Revista Brasileira de Botânica, 33(4), 563–573.

    Google Scholar 

  • Tomlinson, P. B. (1986). The botany of mangroves. Cambridge: Cambridge University Press.

    Google Scholar 

  • Vale, M., Cohn-Haft, M., Bergen, S., & Pimm, S. L. (2008). Effects of future infrastructure development on threat status and occurrence of Amazonian birds. Conservation Biology, 22, 1006–1015.

    Article  Google Scholar 

  • Vezey, E. L., Shah, V. P., Skvarla, J. J., & Raven, P. H. (1988). Morphology and phenetics of Rhizophoraceae pollen. Annals of the Missouri Botanical Garden, 75, 1369–1386.

    Article  Google Scholar 

  • Wesselingh, F. P., Räsänen, M. E., Irion, G., Vonhof, H. B., Kaandorp, R., Renema, W., et al. (2002). Lake Pebas: A paleoecological reconstruction of a Miocene, long-lived lake complex in western Amazonia. Cenozoic Research, 1, 35–81.

    Google Scholar 

  • Wesselingh, F. P., & Salo, J. A. (2006). A Miocene perspective on the evolution of the Amazonian biota. Scripta Geologica, 133, 439–458.

    Google Scholar 

  • Wesselingh, F. P., Hoorn, C., Kroonenberg, S. B., Antonelli, A., Lundberg, J. G., Vonhof, H. B., & Hooghiemstra, H. (2010). On the origin of Amazonian landscapes and biodiversity: A synthesis. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia, landscape and species evolution: A look into the past (pp. 421–431). Oxford: Wiley-Blackwell Publishing.

    Google Scholar 

  • Yamanoi, T. (2003). Mangrove plants and their pollen morphology in Southeast Asia. Monograph of the Mizunami Fossil Museum, 9, 129–213.

    Google Scholar 

  • Yang, L., Hou, Z., & Li, S. (2013). Marine incursion into East Asia: A forgotten driving force of biodiversity. Proceedings of the Royal Society B, 280, 20122892. https://doi.org/10.1098/rspb.2012.2892.

    Article  Google Scholar 

  • Zetter, R., & Ferguson, D. K. (2001). Trapaceae pollen in the Cenozoic. Acta Palaeobotanica, 41, 321–339.

    Google Scholar 

Download references

Acknowledgements

We are very grateful to Nicole van der Wel and Edwin Scholl from the Electron Microscopy Center Amsterdam (EMCA), who facilitated the SEM photography. Furthermore, we thank Suzette Flantua for providing the map for Fig. 1, and Jan van Arkel and Hannah Banks for assisting with the LM and SEM photography of Psilamonocolpites rinconi and Huasheng Huang for helping to compile Fig. 4. We also are grateful to Angela Bruch and an anonymous reviewer for constructive comments on an earlier version of the manuscript. Finally, we thank Torsten Utescher, Angela Bruch, and Dieter Uhl for inviting us to contribute to the special issue in celebration of Volker Mosbrugger’s career and the great stimulus he has provided to the field of palynology and palaeoecology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carina Hoorn.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the special issue “Palaeobotanical contributions in honour of Volker Mosbrugger

Supplementary information

ESM 1

Lithology of samples from Apaporis, Pira Paraná and Agua Negra sampling areas; in yellow the analysed samples (XLSX 63 kb)

ESM 2

Apaporis pollen count dataset of fossil species at different outcrop depths (XLSX 20 kb)

ESM 3

Pira Paraná pollen count dataset of fossil species at different outcrop depths (XLSX 16 kb)

ESM 4

Agua Negra pollen count dataset of fossil species at different outcrop depths (XLSX 19 kb)

ESM 5

R script of the multivariate statistical analysis applied on the Apaporis and Pira Paraná pollen datasets (R 19 kb)

ESM 6

a Measurements of fossil pollen grains from Miocene Amazonia, with England Finder (EF) locations and sampling area coordinates; b Comparative table reporting pollen descriptions from the literature (XLSX 26 kb)

ESM 7

Miocene mangrove associates and modern affinities based on Salamanca et al. (2016) (XLSX 13 kb)

ESM 8

Explanatory key for Fig. 2a and b, assigning names of species to numbers in the figure. (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sciumbata, M., Weedon, J.T., Bogota-Angel, G. et al. Linking modern-day relicts to a Miocene mangrove community of western Amazonia. Palaeobio Palaeoenv 101, 123–140 (2021). https://doi.org/10.1007/s12549-020-00470-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12549-020-00470-z

Keywords

Navigation