Skip to main content

Advertisement

Log in

Porphyrin-based cationic amphiphilic photosensitisers as potential anticancer, antimicrobial and immunosuppressive agents

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) combines a photosensitiser, light and molecular oxygen to induce oxidative stress that can be used to kill pathogens, cancer cells and other highly proliferative cells. There is a growing number of clinically approved photosensitisers and applications of PDT, whose main advantages include the possibility of selective targeting, localised action and stimulation of the immune responses. Further improvements and broader use of PDT could be accomplished by designing new photosensitisers with increased selectivity and bioavailability. Porphyrin-based photosensitisers with amphiphilic properties, bearing one or more positive charges, are an effective tool in PDT against cancers, microbial infections and, most recently, autoimmune skin disorders. The aim of the review is to present some of the recent examples of the applications and research that employ this specific group of photosensitisers. Furthermore, we will highlight the link between their structural characteristics and PDT efficiency, which will be helpful as guidelines for rational design and evaluation of new PSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe H, Wagner SJ (1995) Analysis of viral DNA, protein and envelope damage after methylene blue, phthalocyanine derivative or merocyanine 540 photosensitization. Photochem Photobiol 61:402–409

  • Acedo P, Stockert JC, Cañete M, Villanueva A (2014) Two combined photosensitizers: a goal for more effective photodynamic therapy of cancer. Cell Death Dis 5, e1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acker G, Palumbo A, Neri D, Vajkoczy P, Czabanka M (2016) F8-SIP mediated targeted photodynamic therapy leads to microvascular dysfunction and reduced glioma growth. J Neuro-Oncol 129:33–38

    Article  CAS  Google Scholar 

  • Ackroyd R, Kelty C, Brown N, Reed M (2001) The history of photodetection and photodynamic therapy. Photochem Photobiol 74:656–669

    Article  CAS  PubMed  Google Scholar 

  • Alenezi K, Tovmasyan A, Batinic-Haberle I, Benov LT (2017) Optimizing Zn porphyrin-based photosensitizers for efficient antibacterial photodynamic therapy. Photodiagn Photodyn Ther 17:154–159

    Article  CAS  Google Scholar 

  • Ali H, van Lier JE (1999) Metal complexes as photo- and radiosensitizers. Chem Rev 99:2379–2450

    Article  CAS  PubMed  Google Scholar 

  • Allen CM, Sharman WM, Van Lier JE (2001) Current status of phthalocyanines in the photodynamic therapy of cancer. J Pept Res 5:161–169

    CAS  Google Scholar 

  • Allison RR (2016) Fluorescence guided resection (FGR): A primer for oncology. Photodiagnosis Photodyn Ther 13:73–80

  • Allison RR, Moghissi K (2013a) Oncologic photodynamic therapy: clinical strategies that modulate mechanisms of action. Photodiagn Photodyn Ther 10:331–341

    Article  CAS  Google Scholar 

  • Allison RR, Moghissi K (2013b) Photodynamic therapy (PDT): PDT mechanism. Clin Endocrinol 46:24–29

    Google Scholar 

  • Allison RR, Downie GH, Cuenca R, Hu X-H, Childs CJH, Sibata CH (2004) Photosensitizers in clinical PDT. Photodiagn Photodyn Ther 1:27–42

    Article  CAS  Google Scholar 

  • Almeida RD, Manadas BJ, Carvalho AP, Duarte CB (2004) Intracellular signaling mechanisms in photodynamic therapy. Biochim Biophys Acta 1704:59–86

    CAS  PubMed  Google Scholar 

  • Almutawa F, Thalib L, Hekman D, Sun Q, Hamzavi I, Lim HW (2015) Efficacy of localized phototherapy and photodynamic therapy for psoriasis: a systematic review and meta-analysis. Photodermatol Photoimmunol Photomed 31:5-–14

  • Al-Omari S (2013) Toward a molecular understanding of the photosensitizer-copper interaction for tumour destruction. Biophys Rev 5:305

  • Angeli NG, Lagorio MG, San Román EA, Dicelio LE (2008) Meso-substituted cationic porphyrins of biological interest. Photophysical and physicochemical properties in solution and bound to liposomes. Photochem Photobiol 72:49–56

    Google Scholar 

  • Azzouzi AR, Barret E, Moore CM, Villers A, Allen C, Scherz A, Muir G, de Wildt M, Barber NJ, Lebdai S, Emberton M (2013) TOOKAD(®) soluble vascular-targeted photodynamic (VTP) therapy: determination of optimal treatment conditions and assessment of effects in patients with localised prostate cancer. BJU Int 112:766–774

    Article  CAS  PubMed  Google Scholar 

  • Bacon TH, Levin MJ, Leary JJ, Sarisky RT, Sutton D (2003) Herpes simplex virus resistance to acyclovir and penciclovir after two decades of antiviral therapy. Clin Microbiol Rev 16:114–128

  • Barra F, Roscetto E, Soriano AA, Vollaro A, Postiglione I, Pierantoni GM, Palumbo G, Catania MR (2015) Photodynamic and antibiotic therapy in combination to fight biofilms and resistant surface bacterial infections. Int J Mol Sci 16:20417–20430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belicha-Villanueva A, Riddell J, Bangia N, Gollnick SO (2012) The effect of photodynamic therapy on tumor cell expression of major histocompatibility complex (MHC) class I and MHC class I-related molecules. Lasers Surg Med 44:60–68

    Article  PubMed  PubMed Central  Google Scholar 

  • Ben-Dror S, Bronshtein I, Wiehe A, Röder B, Senge MO, Ehrenberg B (2006) On the correlation between hydrophobicity, liposome binding and cellular uptake of porphyrin sensitizers. Photochem Photobiol 82:695–701

    Article  CAS  PubMed  Google Scholar 

  • Berg K, Selbo PK, Weyergang A, Dietze A, Prasmickaite L, Bonsted A, Engesaeter BØ, Angellpetersen E, Warloe T, Frandsen N, Høgset A (2005) Porphyrin-related photosensitizers for cancer imaging and therapeutic applications. J Microsc 218:133–147

    Article  CAS  PubMed  Google Scholar 

  • Berg K, Weyergang A, Prasmickaite L, Bonsted A, Høgset A, Strand MT, Wagner E, Selbo PK (2010) Photochemical internalization (PCI): a technology for drug delivery. Methods Mol Biol 635:133–145

    Article  CAS  PubMed  Google Scholar 

  • Bihl F, Castelli D, Marincola F, Dodd RY, Brander C (2007) Transfusion-transmitted infections. J Transl Med 5:25

  • Böhm H-J, Banner D, Bendels S, Kansy M, Kuhn B, Müller K, Obst-Sander U, Stahl M (2004) Fluorine in medicinal chemistry. ChemBioChem 5:637–643

    Article  PubMed  CAS  Google Scholar 

  • Bonneau S, Vever-Bizet C (2008) Tetrapyrrole photosensitisers, determinants of subcellular localisation and mechanism processes in therapeutic approaches. Expert Opin Ther Pat 18:1011–1025

    Article  CAS  Google Scholar 

  • Börsch M (2010) Targeting cytochrome C oxidase in mitochondria with Pt(II)-porphyrins for photodynamic therapy. Optical methods for tumor treatment and detection: mechanisms and techniques in photodynamic therapy XIX, proc. SPIE 7551:1–11

    Google Scholar 

  • Brackett CM, Gollnick SO (2011) Photodynamic therapy enhancement of anti-tumour immunity. Photochem Photobiol Sci 10:649–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandis A, Mazor O, Neumark E, Rosenbach-Belkin V, Salomon Y, Scherz A (2005) Novel water-soluble bacteriochlorophyll derivatives for vascular-targeted photodynamic therapy: synthesis, solubility, phototoxicity and the effect of serum proteins. Photochem Photobiol 81:983–993

    Article  CAS  PubMed  Google Scholar 

  • Caminos DA, Spesia MB, Durantini EN (2006) Photodynamic inactivation of Escherichia coli by novel meso-substituted porphyrins by 4-(3-N, N, N-trimethylammoniumpropoxy)phenyl and 4-(trifluoromethyl)phenyl groups. Photochem Photobiol Sci 5:56–65

    Article  CAS  PubMed  Google Scholar 

  • Carrenho LZ, Moreira CG, Vandresen CC, Gomes JR, Gonçalves AG, Barreira SM, Noseda MD, Duarte ME, Ducatti DR, Dietrich M, Paludo K, Cabrini DA, Otuki MF (2015) Investigation of anti-inflammatory and anti-proliferative activities promoted by photoactivated cationic porphyrin. Photodiagn Photodyn Ther 12:444–458

    Article  CAS  Google Scholar 

  • Castano AP, Demidova TN, Hamblin MR (2004) Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn Ther 1:279–293

  • Castano AP, Mroz P, Hamblin MR (2006) Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer 6:535–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castano AP, Mroz P, Wu MX, Hamblin MR (2008) Photodynamic therapy plus low-dose cyclophosphamide generates antitumor immunity in a mouse model. Proc Natl Acad Sci U S A 105:5495–5500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casteel MJ, Jayaraj K, Gold A, Ball LM, Sobsey MD (2004) Photoinactivation of hepatitis A virus by synthetic porphyrins. Photochem Photobiol 80:294–300

  • Cecic I, Parkins CS, Korbelik M (2001) Induction of systemic neutrophil response in mice by photodynamic therapy of solid tumors. Photochem Photobiol 74:712–720

    Article  CAS  PubMed  Google Scholar 

  • Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, Pogue BW, Hasan T (2010) Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev 110:2795–2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang KP, Kolli BK, New Light G (2016) New "light" for one-world approach toward safe and effective control of animal diseases and insect vectors from leishmaniac perspectives. Parasit Vectors 9:396

  • Chen B, Pogue BW, Hoopes PJ, Hasan T (2006) Vascular and cellular targeting for photodynamic therapy. Crit Rev Eukaryot Gene Expr 16:279–305

    Article  PubMed  Google Scholar 

  • Coen DM, Whitley RJ (2011) Antiviral drugs and antiviral drug resistance. Curr Opin Virol 1:545–547

  • Collins TL, Markus EA, Hassett DJ, Robinson JB (2010) The effect of a cationic porphyrin on Pseudomonas aeruginosa biofilms. Curr Microbiol 61:411–416

    Article  CAS  PubMed  Google Scholar 

  • Cordeiro RM, Miotto R, Baptista MS (2012) Photodynamic efficiency of cationic meso-porphyrins at lipid bilayers: insights from molecular dynamics simulations. J Phys Chem B 116:14618–14627

    Article  CAS  PubMed  Google Scholar 

  • Cortez KJ, Maldarelli F (2011) Clinical management of HIV drug resistance. Viruses 3:347–378

  • Costa L et al. (2008) Sewage bacteriophage photoinactivation by cationic porphyrins: a study of charge effect. Photochem Photobiol Sci 7:415–422

  • Costa L et al. (2010) Sewage bacteriophage inactivation by cationic porphyrins: influence of light parameters. Photochem Photobiol Sci 9:1126–1133

  • Costa L et al. (2011) Evaluation of resistance development and viability recovery by a non-enveloped virus after repeated cycles of aPDT. Antiviral Res 91:278–282

  • Costa DC, Gomes MC, Faustino MA, Neves MG, Cunha A, Cavaleiro JA, Almeida A, Tomé JP (2012a) Comparative photodynamic inactivation of antibiotic resistant bacteria by first and second generation cationic photosensitizers. Photochem Photobiol Sci 11:1905–1913

    Article  CAS  PubMed  Google Scholar 

  • Costa L, Faustino MA, Neves MG, Cunha A, Almeida A (2012b) Photodynamic inactivation of mammalian viruses and bacteriophages. Viruses 4:1034–1074

  • Costa L et al. (2013) Involvement of type I and type II mechanisms on the photoinactivation of non-enveloped DNA and RNA bacteriophages. J Photochem Photobiol B 120:10–16

  • Dancil K-PS, Hilario LF, Khoury RG, Mai KU, Nguyen CK, Weddle KS, Shachter AM (1997) Synthesis and aggregation of cationic porphyrins. J Heterocycl Chem 34:749–755

    Article  CAS  Google Scholar 

  • DeRosa MC, Crutchley RJ (2002) Photosensitized singlet oxygen and its applications. Coord Chem Rev 233(234):351–371

    Article  Google Scholar 

  • Ding H, Yu H, Dong Y, Tian R, Huang G, Boothman DA, Sumer BD, Gao J (2011) Photoactivation switch from type II to type I reactions by electron-rich micelles for improved photodynamic therapy of cancer cells under hypoxia. J Control Release 156:276–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolmans DEJGJ, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380–387

    Article  CAS  PubMed  Google Scholar 

  • Dosselli R, Millioni R, Puricelli L, Tessari P, Arrigoni G, Franchin C, Segalla A, Teardo E, and Reddi E (2012). Molecular targets of antimicrobial photodynamic therapy identified by a proteomic approach. J Proteomics 77, 329–343

  • Dummin H, Cernay T, Zimmermann HW (1997) Selective photosensitization of mitochondria in HeLa cells by cationic Zn(II)phthalocyanines with lipophilic side-chains. J Photochem Photobiol B 37:219–229

    Article  CAS  PubMed  Google Scholar 

  • Egyeki M, Turoczy G, Majer Z, Toth K, Fekete A, Maillard P, Csik G (2003) Photosensitized inactivation of T7 phage as surrogate of non-enveloped DNA viruses: efficiency and mechanism of action. Biochim Biophys Acta 1624:115–124

  • Engelmann FM, Mayer I, Gabrielli DS, Toma HE, Kowaltowski AJ, Araki K, Baptista MS (2007) Interaction of cationic meso-porphyrins with liposomes, mitochondria and erythrocytes. J Bioenerg Biomembr 39:175–185

    Article  CAS  PubMed  Google Scholar 

  • Ethirajan M, Chen Y, Joshi P, Pandey RK (2011) The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem Soc Rev 40:340–362

    Article  CAS  PubMed  Google Scholar 

  • Faudale M, Cogoi S, Xodo LE (2012) Photoactivated cationic alkyl-substituted porphyrin binding to g4-RNA in the 5’-UTR of KRAS oncogene represses translation. Chem Commun 48:874–876

    Article  CAS  Google Scholar 

  • Frimayanti N, Yam ML, Lee HB, Othman R, Zain SM, Rahman NA (2011) Validation of quantitative structure-activity relationship (QSAR) model for photosensitizer activity prediction. Int J Mol Sci 12:8626–8644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaspard S, Tempete C, Werner GH (1995) Studies on photoinactivation by various phthalocyanines of a free or replicating non-enveloped virus. J Photochem Photobiol B 31:159–162

  • Gerba CP, Wallis C, Melnick JL (1977) Application of photodynamic oxidation to the disinfection of tapwater, seawater, and sewage contaminated with poliovirus. Photochem Photobiol 26:499–504

  • Giuntini F, Alonso CMA, Boyle RW (2011) Synthetic approaches for the conjugation of porphyrins and related macrocycles to peptides and proteins. Photochem Photobiol Sci 10:759–791

    Article  CAS  PubMed  Google Scholar 

  • Goląb J, Wilczyński G, Zagoźdźon R, Stokłosa T, Dąbrowska A, Rybczyńska J, Wąsik M, Machaj E, Ołdak T, Kozar K, Kamiński R, Giermasz A, Czajka A, Lasek W, Feleszko W, Jakóbisiak M (2000) Potentiation of the anti-tumour effects of photofrin®-based photodynamic therapy by localized treatment with G-CSF. Br J Cancer 82:1485–1491

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham A, Li G, Chen Y, Morgan J, Oseroff A, Dougherty TJ, Pandey RK (2003) Structure–activity relationship of New octaethylporphyrin-based benzochlorins as photosensitizers for photodynamic therapy. Photochem Photobiol 77:561–566

    CAS  PubMed  Google Scholar 

  • Gsponer NS, Spesia MB, Durantini EN (2015) Effects of divalent cations, EDTA and chitosan on the uptake and photoinactivation of Escherichia coli mediated by cationic and anionic porphyrins. Photodiagn Photodyn Ther 12:67–75

    Article  CAS  Google Scholar 

  • Hamblin M (2016) Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr Opin Microbiol 33:67–73

    Article  CAS  PubMed  Google Scholar 

  • Henderson BW, Bellnier DA, Greco WR, Sharma A, Pandey RK, Vaughan LA, Weishaupt KR, Dougherty TJ (1997) An in vivo quantitative structure-activity relationship for a congeneric series of pyropheophorbide derivatives as photosensitizers for photodynamic therapy. Cancer Res 57:4000–4007

  • Hong EJ, Choi DG, Shim MS (2016) Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharm Sin B 6:297–307

    Article  PubMed  PubMed Central  Google Scholar 

  • Horowitz B, Williams B, Rywkin S, Prince AM, Pascual D, Geacintov N, Valinsky J (1991) Inactivation of viruses in blood with aluminum phthalocyanine derivatives. Transfusion 31:102–108

  • Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, Sarkar S (2014) Drug resistance in cancer: an overview. Cancer 6:1769–1792

    Article  CAS  Google Scholar 

  • Huang Z, Xu H, Meyers AD, Musani AI, Wang L, Tagg R, Barqawi AB, Chen YK (2008) Photodynamic therapy for treatment of solid tumors – potential and technical challenges. Technol Cancer Res Treat 7:309–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huynh E, Zheng G (2014) Porphysome nanotechnology: a paradigm shift in lipid-based supramolecular structures. Nano Today 9:212–222

    Article  CAS  Google Scholar 

  • Inguscio V, Panzarini E, Dini L (2012) Autophagy contributes to the death/survival balance in cancer photo dynamic therapy. Cells 1:464–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvi MT, Niedre MJ, Patterson MS, Wilson BC (2006) Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospect. Photochem Photobiol 82:1198–1210

    Article  CAS  PubMed  Google Scholar 

  • Jarvi MT, Patterson MS, Wilson BC (2012) Insights into photodynamic therapy dosimetry: simultaneous singlet oxygen luminescence and photosensitizer photobleaching measurements. Biophys J 102:661–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang H, Granville DJ, North JR, Richter AM, Hunt DW (2002) Selective action of the photosensitizer QLT0074 on activated human T lymphocytes. Photochem Photobiol 76:224–231

  • Jin R-H, Aoki S, Shima KJ (1997) Phosphoniumyl cationic porphyrins Self-aggregation origin from π-π and cation-π interactions. J Chem Soc Faraday Trans 93:3945–3953

    Article  Google Scholar 

  • Jori G, Fabris C, Soncin M, Ferro S, Coppellotti O, Dei D, Fantetti L, Chiti G, Roncucci G (2006) Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers Surg Med 38:468–481

    Article  PubMed  Google Scholar 

  • Josefsen LB, Boyle RW (2008) Photodynamic therapy and the development of metal-based photosensitisers. Metal-Based Drugs 2008:276109

    Article  PubMed  PubMed Central  Google Scholar 

  • Josefsen LB, Boyle RW (2012) Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics 2:916–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabingu E, Vaughan L, Owczarczak B, Ramsey KD, Gollnick SO (2007) CD8+ T cell-mediated control of distant tumours following local photodynamic therapy is independent of CD4+ T cells and dependent on natural killer cells. Br J Cancer 96:1839–1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kano K, Fukuda K, Wakami H, Nishiyabu R, Pasternack RF (2000) Factors influencing self-aggregation tendencies of cationic porphyrins in aqueous solution. J Am Chem Soc 122:7494–74502

    Article  CAS  Google Scholar 

  • Karlin S, Brendel V (1988) Charge configurations in viral proteins. Proc Natl Acad Sci U S A 85:9396–9400

  • Kasturi C, Platz MS (1992) Inactivation of lambda phage with 658 nm light using a DNA binding porphyrin sensitizer. Photochem Photobiol 56:427–429

  • Ke MR et al. (2014) Photodynamic inactivation of bacteria and viruses using two monosubstituted zinc(II) phthalocyanines. Eur J Med Chem 84:278–283

  • Kessel D, Luguya R, Vicente MGH (2003) Localization and photodynamic efficacy of two cationic porphyrins varying in charge distributions. Photochem Photobiol 78:431–435

    Article  CAS  PubMed  Google Scholar 

  • Kharkwal GB, Sharma SK, Huang YY, Dai T, Hamblin MR (2011) Photodynamic therapy for infections: clinical applications. Lasers Surg Med 43:755–767

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiesslich T, Gollmer A, Maisch T, Berneburg M, Plaetzer K (2013) A comprehensive tutorial on in vitro characterization of New photosensitizers for photodynamic antitumor therapy and photodynamic inactivation of microorganisms. Biomed Res Int 2013:1–17

    Article  CAS  Google Scholar 

  • Kim M, Jung HY, Park HJ (2015) Topical PDT in the treatment of benign skin diseases: principles and new applications. Int J Mol Sci 16:23259–23278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinovink JW, van Driel PB, Snoeks TJ, Prokopi N, Fransen MF, Cruz LJ, Mezzanotte L, Chan A, Löwik CW, Ossendorp F (2016) Combination of photodynamic therapy and specific immunotherapy efficiently eradicates established tumors. Clin Cancer Res 22:1459–1468

    Article  CAS  PubMed  Google Scholar 

  • Korbelik M (2006) PDT-associated host response and its role in the therapy outcome. Lasers Surg Med 38:500–508

    Article  PubMed  Google Scholar 

  • Kos I, Rebouças JS, DeFreitas-Silva G, Salvemini D, Vujaskovic Z, Dewhirst MW, Spasojević I, Batinić-Haberle I (2009) Lipophilicity of potent porphyrin-based antioxidants: comparison of ortho and meta isomers of Mn(III) N-alkylpyridylporphyrins. Free Radic Biol Med 47:72–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kousis PC, Henderson BW, Maier PG, Gollnick SO (2007) Photodynamic therapy enhancement of antitumor immunity is regulated by neutrophils. Cancer Res 67:10501–10510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer-Marek G, Serpa C, Szurko A, Widel M, Sochanik A, Snietura M, Kus P, Nunes RM, Arnaut LG, Ratuszna A (2006) Spectroscopic properties and photodynamic effects of new lipophilic porphyrin derivatives: efficacy, localisation and cell death pathways. J Photochem Photobiol B 84:1–14

    Article  CAS  PubMed  Google Scholar 

  • Kussovski V, Mantareva V, Angelov I, Orozova P, Wöhrle D, Schnurpfeil G, Borisova E, Avramov L (2009) Photodynamic inactivation of Aeromonas hydrophila by cationic phthalocyanines with different hydrophobicity. FEMS Microbiol Lett 294:133–140

    Article  CAS  PubMed  Google Scholar 

  • Lambrechts SA, Schwartz KR, Aalders MC, Dankert JB (2005) Photodynamic inactivation of fibroblasts by a cationic porphyrin. Lasers Med Sci 20:62–67

    Article  PubMed  Google Scholar 

  • Lazzeri D, Durantini EN (2003) Synthesis of meso-substituted cationic porphyrins as potential photodynamic agents. ARKIVOC 10:227–239

    Google Scholar 

  • Lebedeva N, Malkova E, Syrbu S, Gubarev Y, Nikitin D (2013) Investigation of interactions between cationic and anionic porphyrins and BSA in aqueous media. Int J Biochem Biophys 2:13–18

    Google Scholar 

  • Lei W, Xie J, Hou Y, Jiang G, Zhang H, Wang P, Wang X, Zhang B (2010) Mitochondria-targeting properties and photodynamic activities of porphyrin derivatives bearing cationic pendant. J Photochem Photobiol B 98:167–171

    Article  CAS  PubMed  Google Scholar 

  • Lenard J, Rabson A, Vanderoef R (1993) Photodynamic inactivation of infectivity of human immunodeficiency virus and other enveloped viruses using hypericin and rose bengal: inhibition of fusion and syncytia formation. Proc Natl Acad Sci U S A 90:158–162

  • Li H, Fedorova OS, Grachev AN, Trumble WR, Bohach GA, Czuchajowski L (1997) A series of meso-tris (N-methyl-pyridiniumyl)-(4-alkylamidophenyl) porphyrins: synthesis, interaction with DNA and antibacterial activity. Biochim Biophys Acta 1354:252–260

  • Liang YI, Lu LM, Chen Y, Lin YK (2016) Photodynamic therapy as an antifungal treatment. Exp Ther Med 12:23–27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lieder A, Khan MK, Lippert BM (2014) Photodynamic therapy for recurrent respiratory papillomatosis. Cochrane Database Syst Rev:CD009810

  • Liu Y, Qin R, Zaat SAJ, Breukink E, Heger M (2015) Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections. J Clin Transl Res 1:140–167

    Google Scholar 

  • Lopez Zeballos NC, Gauna GA, Garcia Vior MC, Awruch J, Dicelio LE (2014) Interaction of cationic phthalocyanines with DNA. Importance of the structure of the substituents. J Photochem Photobiol B 136:29–33

  • Maeda H, Tsukigawa K, Fang J (2016) A retrospective 30 years after discovery of the enhanced permeability and retention effect of solid tumors: next-generation chemotherapeutics and photodynamic therapy-problems, solutions, and prospects. Microcirculation 23:173–182

    Article  CAS  PubMed  Google Scholar 

  • Maeding N, Verwanger T, Krammer B (2016) Boosting tumor-specific immunity using PDT. Cancer 8:91

    Article  Google Scholar 

  • Maisch T (2015) Resistance in antimicrobial photodynamic inactivation of bacteria. Photochem Photobiol Sci 14:1518–1526

    Article  CAS  PubMed  Google Scholar 

  • Makhseed S, Machacek M, Alfadly W, Tuhl A, Vinodh M, Simunek T, Novakova V, Kubat P, Rudolf E, Zimcik P (2013) Water-soluble non-aggregating zinc phthalocyanine and in vitro studies for photodynamic therapy. Chem Commun 49:11149–11151

    Article  CAS  Google Scholar 

  • Malatesti N, Smith K, Savoie H, Greenman J, Boyle RW (2006) Synthesis and in vitro investigation of cationic 5, 15-diphenyl porphyrin-monoclonal antibody conjugates as targeted photodynamic sensitisers. Int J Oncol 28:1561–1569

    CAS  PubMed  Google Scholar 

  • Malatesti N, Harej A, Kraljević SP, Lončarić M, Zorc H, Wittine K, Anđelković U, Josić D (2016) Synthesis, characterisation and in vitro investigation of photodynamic activity of 5-(4- octadecanamidophenyl)-10, 15, 20-tris(N- methylpyridinium-3-yl)porphyrin trichloride on HeLa cells using low light fluence rate. Photodiagn Photodyn Ther 15:115–126

    Article  CAS  Google Scholar 

  • Mantareva VN, Angelov I, Wöhrle D, Borisova E, Kussovski V (2013) Metallophthalocyanines for antimicrobial photodynamic therapy: an overview of our experience. J Porphyrins Phthalocyanines 17:399–416

    Article  CAS  Google Scholar 

  • Mehraban N, Freeman HS (2015) Development in PDT sensitizers for increased selectivity and singlet oxygen production. Materials 8:4421–4456

    Article  Google Scholar 

  • Melnick JL, Wallis C (1977) Photodynamic inactivation of herpes simplex virus: a status report. Ann N Y Acad Sci 284:171–181

  • Memoli MJ, Davis AS, Proudfoot K, Chertow DS, Hrabal RJ, Bristol T, Taubenberger JK (2011) Multidrug-resistant 2009 pandemic influenza A(H1N1) viruses maintain fitness and transmissibility in ferrets. J Infect Dis 203:348–357

  • Mesquita MQ, Menezes JCJMDS, Neves MGPMS, Tomé AC, Cavaleiro JAS, Cunha Â, Almeida A, Hackbarth S, Röder B, Faustino MAF (2014) Photodynamic inactivation of bioluminescent Escherichia coli by neutral and cationic pyrrolidine-fused chlorins and isobacteriochlorins. Bioorg Med Chem Lett 24:808–812

    Article  CAS  PubMed  Google Scholar 

  • Mettath S, Munson BR, Pandey RK (1999) DNA interaction and photocleavage properties of porphyrins containing cationic substituents at the peripheral position. Bioconjug Chem 10:94–102

  • Milgrom LR (2008) Toward recombinant antibody-fragment targeted photodynamic therapy. Sci Prog 91:241–262

    Article  CAS  PubMed  Google Scholar 

  • Michen B, Graule T (2010) Isoelectric points of viruses. J Appl Microbiol 109:388–397

  • Mitton D, Ackroyd R (2008) A brief overview of photodynamic therapy in Europe. Photodiagn Photodyn Ther 5:103–111

    Article  CAS  Google Scholar 

  • Modica-Napolitano JS, Aprille JR (2001) Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Adv Drug Deliv Rev 49:63–70

    Article  CAS  PubMed  Google Scholar 

  • Moor AC, Wagenaars-van Gompel AE, Brand A, Dubbelman MA, VanSteveninck J (1997) Primary targets for photoinactivation of vesicular stomatitis virus by AIPcS4 or Pc4 and red light. Photochem Photobiol 65:465–470

  • Morgan J, Oseroff AR (2001) Mitochondria-based photodynamic anti-cancer therapy. Adv Drug Deliv Rev 49:71–86

    Article  CAS  PubMed  Google Scholar 

  • Mroz P, Hamblin MR (2011) The immunosuppressive side of PDT. Photochem Photobiol Sci 10:751–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • North J, Freeman S, Overbaugh J, Levy J, Lansman R (1992) Photodynamic inactivation of retrovirus by benzoporphyrin derivative: a feline leukemia virus model. Transfusion 32:121–128

  • Nowis D, Stokłosa T, Legat M, Issat T, Jakóbisiak M, Gołąb J (2005) The influence of photodynamic therapy on the immune response. Photodiagnosis Photodyn Ther 2:283–298

  • O’Brien JM, Gaffney DK, Wang TP, Sieber F (1992) Merocyanine 540-sensitized photoinactivation of enveloped viruses in blood products: site and mechanism of phototoxicity. Blood 80:277–285

  • Olivo M, Bhuvaneswari R, Lucky SS, Dendukuri N, Thong PSP (2010) Targeted therapy of cancer using photodynamic therapy in combination with multi-faceted anti-tumor modalities. Pharmaceuticals 3:1507–1529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ormond AB, Freeman HS (2013) Dye sensitizers for photodynamic therapy. Materials 6:817–840

    Article  CAS  Google Scholar 

  • Orosz A et al. (2013) Binding of new cationic porphyrin-tetrapeptide conjugates to nucleoprotein complexes. Biophys Chem 177-178:14–23

  • Palumbo A, Hauler F, Dziunycz P, Schwager K, Soltermann A, Pretto F, Alonso C, Hofbauer GF, Boyle RW, Neri D (2011) A chemically modified antibody mediates complete eradication of tumours by selective disruption of tumour blood vessels. Br J Cancer 104:1106–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park MJ, Bae JH, Chung JS, Kim SH, Kang CD (2011) Induction of NKG2D ligands and increased sensitivity of tumor cells to NK cell-mediated cytotoxicity by hematoporphyrin-based photodynamic therapy. Immunol Investig 40:367–382

    Article  CAS  Google Scholar 

  • Perdrau JR, Todd C (1933) The photodynamic action of methylene blue of certian viruses. Proc R Soc Lond B 112:288–298

  • Pisarek S, Maximova K, Gryko D (2014) Strategies toward the synthesis of amphiphilic porphyrins. Tetrahedron 70: 6685–6715

  • Plaetzer K, Kiesslich T, Krammer B, Hammerl P (2002) Characterization of the cell death modes and the associated changes in cellular energy supply in response to AlPcS4-PDT. Photochem Photobiol Sci 1:172–177

    Article  CAS  PubMed  Google Scholar 

  • Plaetzer K, Kiesslich T, Oberdanner KB, Krammer B (2005) Apoptosis following photodynamic tumor therapy: induction, mechanisms and detection. Curr Pharm Des 11:1151–1165

    Article  CAS  PubMed  Google Scholar 

  • Prasanth CS, Karunakaran SC, Paul AK, Kussovski V, Mantareva V, Ramaiah D, Selvaraj L, Angelov I, Avramov L, Nandakumar K, Subhash N (2014) Antimicrobial photodynamic efficiency of novel cationic porphyrins towards periodontal gram-positive and gram-negative pathogenic bacteria. Photochem Photobiol 90:628–640

    Article  CAS  PubMed  Google Scholar 

  • Pushpan SK, Venkatraman S, Anand VG, Sankar J, Parmeswaran D, Ganesan S, Chandrashekar TK (2002) Porphyrins in photodynamic therapy - a search for ideal photosensitizers. Curr Med Chem Anticancer Agents 2:187–207

    Article  CAS  PubMed  Google Scholar 

  • Ragàs X, Sánchez-García D, Ruiz-González R, Dai T, Agut M, Hamblin MR, Nonell S (2010) Cationic porphycenes as potential photosensitizers for antimicrobial photodynamic therapy. J Med Chem 53:7796–7803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajaputra P, Nkepang G, Watley R, You Y (2012) Synthesis and in vitro biological evaluation of lipophilic cation conjugated photosensitizers for targeting mitochondria. Bioorg Med Chem 21:379–387

    Article  PubMed  CAS  Google Scholar 

  • Rapozzi V, Zorzet S, Zacchigna M, Della Pietra E, Cogoi S, Xodo LE (2014) Anticancer activity of cationic porphyrins in melanoma tumour-bearing mice and mechanistic in vitro studies. Mol Cancer 13:75–92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ratkay LG, Waterfield JD, Hunt DW (2000) Photodynamic therapy in immune (non-oncological) disorders: focus on benzoporphyrin derivatives. BioDrugs 14:127–135

  • Reiners JJ, Agostinis P, Berg K, Oleinick NL, Kessel D (2010) Assessing autophagy in the context of photodynamic therapy. Autophagy 6:7–18

  • Reinhard A, Sandborn WJ, Melhem H, Bolotine L, Chamaillard M, Peyrin-Biroulet L (2015) Photodynamic therapy as a new treatment modality for inflammatory and infectious conditions. Expert Rev Clin Immunol 11:637–657

  • Remichkova M et al. (2016) Virus inactivation under the photodynamic effect of phthalocyanine zinc(II) complexes. Z Naturforsch C doi:10.1515/znc-2016-0119

  • Ricchelli F, Franchi L, Miotto G, Borsetto L, Gobbo S, Nikolov P, Bommer JC, Reddi E (2005) Meso-substituted tetra-cationic porphyrins photosensitize the death of human fibrosarcoma cells via lysosomal targeting. Int J Biochem Cell Biol 37:306–319

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues CF, Silva S, Azeredo J, Henriques M (2016a) Candida glabrata’s recurrent infections: biofilm formation during Amphotericin B treatment Lett Appl Microbiol 63:77–81

  • Rodrigues ME, Silva S, Azeredo J, Henriques M (2016b) Novel strategies to fight Candida species infection. Crit Rev Microbiol 42:594–606

  • Rosenkranz AA, Jans DA, Sobolev AS (2000) Targeted intracellular delivery of photosensitizers to enhance photodynamic efficiency. Immunol Cell Biol 78:452–464

  • Ryazanova O, Zozulya V, Voloshin I, Glamazda A, Dubey I, Dubey L, Karachevtsev V (2016) Interaction of a tricationic meso-substituted porphyrin with guanine-containing polyribonucleotides of various structures. Methods Appl Fluoresc 4:034005

    Article  PubMed  Google Scholar 

  • Rywkin S, Lenny L, Goldstein J, Geacintov NE, Margolis-Nunno H, Horowitz B (1992) Importance of type I and type II mechanisms in the photodynamic inactivation of viruses in blood with aluminum phthalocyanine derivatives. Photochem Photobiol 56:463–469

  • Rywkin S et al. (1994) New phthalocyanines for photodynamic virus inactivation in red blood cell concentrates. Photochem Photobiol 60:165–170

  • Rywkin S, Ben-Hur E, Reid ME, Oyen R, Ralph H, Horowitz B (1995) Selective protection against IgG binding to red cells treated with phthalocyanines and red light for virus inactivation. Transfusion 35:414–420

  • Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570

    Article  CAS  PubMed  Google Scholar 

  • Sharma SK, Mroz P, Dai T, Huang Y-Y, Denis TGS, Hamblin MR (2012) Photodynamic therapy for cancer and for infections: what is the difference? Isr J Chem 52:691–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma SK, Krayer M, Sperandio FF, Huang L, Huang Y-Y, Holten D, Lindsey JS, Hamblin MR (2013) Synthesis and evaluation of cationic bacteriochlorin amphiphiles with effective in vitro photodynamic activity against cancer cells at low nanomolar concentration. J Porphyrins Phthalocyanines 17:73–85

    Article  CAS  Google Scholar 

  • Shim G, Lee S, Kim YB, Kim CW, Oh YK (2011) Enhanced tumor localization and retention of chlorin e6 in cationic nanolipoplexes potentiate the tumor ablation effects of photodynamic therapy. Nanotechnology 22:365101

    Article  PubMed  CAS  Google Scholar 

  • Sibata CH, Colussi VC, Oleinick NL, Kinsella TJ (2000) Photodynamic therapy: a new concept in medical treatment. Braz J Med Biol Res 33:869–880

    Article  CAS  PubMed  Google Scholar 

  • Silva EM et al. (2005) Synthesis of cationic beta-vinyl substituted meso-tetraphenylporphyrins and their in vitro activity against herpes simplex virus type 1. Bioorg Med Chem Lett 15:3333–3337

  • Simões C, Gomesa MC, Neves MGPMS, Cunha Â, Tomé JPC, Tomé AC, Cavaleiro JAS, Almeida A, Faustino MAF (2016) Photodynamic inactivation of Escherichia coli with cationic meso-tetraarylporphyrins – the charge number and charge distribution effects. Catal Today 266:197–204

    Article  CAS  Google Scholar 

  • Skovsen E, Snyder JW, Lambert JD, Ogilby PR (2005) Lifetime and diffusion of singlet oxygen in a cell. J Phys Chem B 109:8570–8573

    Article  CAS  PubMed  Google Scholar 

  • Slomp AM, Barreira SM, Carrenho LZ, Vandresen CC, Zattoni IF, Ló SM, Dallagnol JC, Ducatti DR, Orsato A, Duarte ME, Noseda MD, Otuki MF, Gonçalves AG (2017) Photodynamic effect of meso-(aryl)porphyrins and meso-(1-methyl-4-pyridinium)porphyrins on HaCaT keratinocytes. Bioorg Med Chem Lett 27:156–161

    Article  CAS  PubMed  Google Scholar 

  • Smetana Z, Mendelson E, Manor J, van Lier JE, Ben-Hur E, Salzberg S, Malik Z (1994) Photodynamic inactivation of herpes viruses with phthalocyanine derivatives. J Photochem Photobiol B 22:37–43

  • Smetana Z, Malik Z, Orenstein A, Mendelson E, Ben-Hur E (1997) Treatment of viral infections with 5-aminolevulinic acid and light. Lasers Surg Med 21:351–358

  • Smetana Z, Ben-Hur E, Mendelson E, Salzberg S, Wagner P, Malik Z (1998) Herpes simplex virus proteins are damaged following photodynamic inactivation with phthalocyanines. J Photochem Photobiol B 44:77–83

  • Smith K, Malatesti N, Cauchon N, Hunting D, Lecomte R, van Lier J, Greenman J, Boyle RW (2011) Mono- and tri-cationic porphyrin–monoclonal antibody conjugates: photodynamic activity and mechanism of action. Immunology 132:256–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soler DC, Ohtola J, Sugiyama H, Rodriguez ME, Han L, Oleinick NL, Lam M, Baron ED, Cooper KD, McCormick TS (2016) Activated T cells exhibit increased uptake of silicon phthalocyanine Pc 4 and increased susceptibility to Pc 4-photodynamic therapy-mediated cell death. Photochem Photobiol Sci 15:822–831

  • Sperandio FF, Huang YY, Hamblin MR (2013) Antimicrobial photodynamic therapy to kill Gram-negative bacteria. Recent Pat Antiinfect Drug Discov 8:108–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spesia MB, Lazzeri D, Pascual L, Rovera M, Durantini EN (2005) Photoinactivation of Escherichia coli using porphyrin derivatives with different number of cationic charges. FEMS Immunol Med Microbiol 44:289–295

    Article  CAS  PubMed  Google Scholar 

  • Spring BQ, Rizvi I, Xu N, Hasan T (2015) The role of photodynamic therapy in overcoming cancer drug resistance. Photochem Photobiol Sci 14:1476–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamati I, Kuimova MK, Lion M, Yahioglu G, Phillips D, Deonarain MP (2010) Novel photosensitisers derived from pyropheophorbide-a: uptake by cells and photodynamic efficiency in vitro. Photochem Photobiol Sci 9:1033–1041

    Article  CAS  PubMed  Google Scholar 

  • Staneloudi C, Smith KA, Hudson R, Malatesti N, Savoie H, Boyle RW, Greenman J (2007) Development and characterization of novel photosensitizer: scFv conjugates for use in photodynamic therapy of cancer. Immunology 120:512–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern PL et al. (2012) Therapy of human papillomavirus-related disease. Vaccine 30 Suppl 5:F71–82

  • Stolik S, Delgado JA, Pérez A, Anasagasti L (2000) Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues. J Photochem Photobiol B 57:90–93

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Mroz P, Dai T, Huang L, Morimoto Y, Kinoshita M, Yoshihara Y, Nemoto K, Shinomiya N, Seki S, Hamblin MR (2012) Photodynamic therapy Can induce a protective innate immune response against murine bacterial arthritis via neutrophil accumulation. PLoS ONE 7, e39823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Kataoka H, Yano S, Sawada T, Akashi H, Inoue M, Suzuki S, Inagaki Y, Hayashi N, Nishie H, Shimura T, Mizoshita T, Mori Y, Kubota E, Tanida S, Takahashi S, Joh T (2016) Immunogenic cell death due to a new photodynamic therapy (PDT) with glycoconjugated chlorin (G-chlorin). Oncotarget 7:47242–47251

    PubMed  PubMed Central  Google Scholar 

  • Tao XH, Guan Y, Shao D, Xue W, Ye FS, Wang M, He MH (2014) Efficacy and safety of photodynamic therapy for cervical intraepithelial neoplasia: a systemic review. Photodiagnosis Photodyn Ther 11:104–112

  • Tarabukina IS, Startseva OM, Patov SA, Belykh DV (2015) Novel dicationic chlorin e6 derivatives. Macroheterocycles 8:168–176

    Article  CAS  Google Scholar 

  • Tavares A, Carvalho CMB, Faustino MA, Neves MGPMS, Tomé JPC, Tomé AC, Cavaleiro JAS, Cunha A, Gomes NCM, Alves E, Almeida A (2010) Antimicrobial photodynamic therapy: study of bacterial recovery viability and potential development of resistance after treatment. Mar Drugs 8:91–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng IT, Chang YJ, Wang LS, Lu HY, Wu LC, Yang CM, Chiu CC, Yang CH, Hsu SL, Ho JA (2013) Phospholipid-functionalized mesoporous silica nanocarriers for selective photodynamic therapy of cancer. Biomaterials 34:7462–7470

    Article  CAS  PubMed  Google Scholar 

  • Theodossiou TA, Gonçalves AR, Yannakopoulou K, Skarpen E, Berg K (2015) Photochemical internalization of tamoxifens transported by a “Trojan-horse” nanoconjugate into breast-cancer cell lines. Angew Chem Int Ed 54:4885–4889

    Article  CAS  Google Scholar 

  • Tim M (2015) Strategies to optimize photosensitizers for photodynamic inactivation of bacteria. J Photochem Photobiol B 150:2–10

  • Tome JP et al. (2005) Synthesis of glycoporphyrin derivatives and their antiviral activity against herpes simplex virus types 1 and 2. Bioorg Med Chem 13:3878–3888

  • Tome JP et al. (2007) Synthesis of neutral and cationic tripyridylporphyrin-D-galactose conjugates and the photoinactivation of HSV-1. Bioorg Med Chem 15:4705–4713

  • Tovmasyan A, Babayan N, Poghosyan D, Margaryan K, Harutyunyan B, Grigoryan R, Sarkisyan N, Spasojevic I, Mamyan S, Sahakyan L, Aroutiounian R, Ghazaryan R, Gasparyan G (2014) Novel amphiphilic cationic porphyrin and its Ag(II) complex as potential anticancer agents. J Inorg Biochem 140:94–103

  • Vaidya A, Sun Y, Ke T, Jeong EK, Lu ZR (2006) Contrast enhanced MRI-guided photodynamic therapy for site-specific cancer treatment. Magn Reson Med 56:761–767

    Article  CAS  PubMed  Google Scholar 

  • van Straten D, Mashayekhi V, de Bruijn HS, Oliveira S, Robinson DJ (2017) Oncologic photodynamic therapy: basic principles, current clinical status and future directions. Cancers (Basel) 9:19

  • Vicente MGH (2001) Porphyrin-based sensitizers in the detection and treatment of cancer: recent progress. Curr Med Chem Anticancer Agents 1:175–194

    Article  CAS  PubMed  Google Scholar 

  • Wachowska M, Gabrysiak M, Muchowicz A, Bednarek W, Barankiewicz J, Rygiel T, Boon L, Mroz P, Hamblin MR, Golab J (2014) 5-Aza-2’-deoxycytidine potentiates antitumour immune response induced by photodynamic therapy. Eur J Cancer 50:1370–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wainwright M, Maisch T, Nonell S, Plaetzer K, Almeida A, Tegos GP, Hamblin MR (2017) Photoantimicrobials-are we afraid of the light. Lancet Infect Dis 17:e49–e55

  • Wallis C, Melnick JL (1963) Photodynamic inactivation of poliovirus. Virology 21:332–341

  • Wallis C, Sakurada N, Melnick JL (1963) Influenza vaccine prepared by photodynamic inactivation of virus. J Immunol 91:677–682

  • Wallis C, Scheiris C, Melnick JL (1967) Photodynamically inactivated vaccines prepared by growing viruses in cells containing neutral red. J Immunol 99:1134–1139

  • Wang I, Bendsoe N, Klinteberg CA, Enejder AM, Andersson-Engels S, Svanberg S, Svanberg K (2001) Photodynamic therapy vs. cryosurgery of basal cell carcinomas: results of a phase III clinical trial. Br J Dermatol 144:832–840

  • Wang S, Gao R, Zhou F, Selke M (2004) Nanomaterials and singlet oxgen photosensitizers: potential applications in photodynamic therapy. J Mater Chem 14:487–493

    Article  CAS  Google Scholar 

  • Wang YY, Ryu AR, Jin S, Jeon YM, Lee MY (2017) Chlorin e6-Mediated Photodynamic Therapy Suppresses P. acnes-Induced Inflammatory Response via NFκB and MAPKs Signaling Pathway. PLoS ONE 12:e0170599

  • Wei C, Jia G, Zhou J, Han G, Li C (2009) Evidence for the binding mode of porphyrins to G-quadruplex DNA. Phys Chem Chem Phys 11:4025–4032

    Article  CAS  PubMed  Google Scholar 

  • Wilson BC, Patterson MS (2008) The physics, biophysics and technology of photodynamic therapy. Phys Med Biol 53:R61–R109

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization Media Centre (2016) Antimicrobial resistance, Fact sheet. http://www.who.int/mediacentre/factsheets/fs194/en. Accessed 06 Feb 2017

  • Wyld L, Reed MWR, Brown NJ (2001) Differential cell death response to photodynamic therapy is dependent on dose and cell type. Br J Cancer. 841384–1386

  • Yakubovskaya RI, Plotnikova EA, Plyutinskaya AD, Morozova NB, Chissov VI, Makarova EA, Dudkin SV, Lukyanets EA, Vorozhtsov GN (2014) Photophysical properties and in vitro and in vivo photoinduced antitumor activity of cationic salts of meso-tetrakis(N-alkyl-3-pyridyl)bacteriochlorins. J Photochem Photobiol B 130:109–114

    Article  CAS  PubMed  Google Scholar 

  • Yang Y-T, Chien H-F, Chang P-H, Chen C-T (2013) Photodynamic inactivation of chlorin e6-loaded CTAB-liposomes against Candida albicans. Lasers Surg Med 45:175–185

    Article  PubMed  Google Scholar 

  • Yang Y, Hu Y, Wang H (2016) Targeting antitumor immune response for enhancing the efficacy of photodynamic therapy of cancer: recent advances and future perspectives. Oxidative Med Cell Longev 2016:1–11

    Google Scholar 

  • Yayon A, Aviezer D, Gross Z, Tikva P (2004) Pharmaceuticals compositions comprising porphyrins and some novel porphyrin derivatives. United States Patent 6(730):666 B1

    Google Scholar 

  • Yoon I, Li JZ, Shim YK (2013) Advance in photosensitizers and light delivery for photodynamic therapy. Clin Endocrinol 46:7–23

    Google Scholar 

  • Zhao P, Xu LC, Huang JW, Zheng KC, Fu B, Yu HC, Ji LN (2008) Tricationic pyridium porphyrins appending different peripheral substituents: experimental and DFT studies on their interactions with DNA. Biophys Chem 135:102–109

    Article  CAS  PubMed  Google Scholar 

  • Zupan K, Herenyi L, Toth K, Egyeki M, Csik G (2005) Binding of cationic porphyrin to isolated DNA and nucleoprotein complex: quantitative analysis of binding forms under various experimental conditions. Biochemistry 44:15000–15006

  • Zupan K, Egyeki M, Toth K, Fekete A, Herenyi L, Modos K, Csik G (2008) Comparison of the efficiency and the specificity of DNA-bound and free cationic porphyrin in photodynamic virus inactivation. J Photochem Photobiol B 90:105–112

Download references

Acknowledgements

NM, IM and IJ acknowledge funding by the University of Rijeka, grants #13.11.1.2.03, 13.11.1.2.08 and 13.11.1.2.09, respectively; IM acknowledges funding by Croatian science foundation grant #7459, and IJ by FP7-PEOPLE-2013-CIG-EU grant #618587. The authors also acknowledge the equipment purchased within the project “Research Infrastructure for Campus-based Laboratories at University of Rijeka”, financed by European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nela Malatesti.

Ethics declarations

Conflicts of interest

Nela Malatesti declares that she has no conflicts of interest. Ivana Munitic declares that she has no conflicts of interest. Igor Jurak declares that he has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malatesti, N., Munitic, I. & Jurak, I. Porphyrin-based cationic amphiphilic photosensitisers as potential anticancer, antimicrobial and immunosuppressive agents. Biophys Rev 9, 149–168 (2017). https://doi.org/10.1007/s12551-017-0257-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-017-0257-7

Keywords

Navigation