Skip to main content

Advertisement

Log in

Uncovering the important role of mitochondrial dynamics in oogenesis: impact on fertility and metabolic disorder transmission

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Oocyte health is tightly tied to mitochondria given their role in energy production, metabolite supply, calcium (Ca2+) buffering, and cell death regulation, among others. In turn, mitochondrial function strongly relies on these organelle dynamics once cyclic events of fusion and fission (division) are required for mitochondrial turnover, positioning, content homogenization, metabolic flexibility, interaction with subcellular compartments, etc. Importantly, during oogenesis, mitochondria change their architecture from an “orthodox” elongated shape characterized by the presence of numerous transversely oriented cristae to a round-to-oval morphology containing arched and concentrically arranged cristae. This, along with evidence showing that mitochondrial function is kept quiescent during most part of oocyte development, suggests an important role of mitochondrial dynamics in oogenesis. To investigate this, recent works have downregulated/upregulated in oocytes the expression of key effectors of mitochondrial dynamics, including mitofusins 1 (MFN1) and 2 (MFN2) and the dynamin-related protein 1 (DRP1). As a result, both MFN1 and DRP1 were found to be essential to oogenesis and fertility, while MFN2 deletion led to offspring with increased weight gain and glucose intolerance. Curiously, neither MFN1/MFN2 deficiency nor DRP1 overexpression enhanced mitochondrial fragmentation, indicating that mitochondrial size is strictly regulated in oocytes. Therefore, the present work seeks to discuss the role of mitochondria in supporting oogenesis as well as recent findings connecting defective mitochondrial dynamics in oocytes with infertility and transmission of metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbassi L, El-Hayek S, Carvalho KF, Wang W, Yang Q, Granados-Aparici S, Mondadori R, Bordignon V, Clarke HJ (2021) Epidermal growth factor receptor signaling uncouples germ cells from the somatic follicular compartment at ovulation. Nat Commun 12:1–13. https://doi.org/10.1038/s41467-021-21644-z

  • Agarwal P, Morriseau TS, Kereliuk SM, Doucette CA, Wicklow BA, Dolinsky VW (2018) Maternal obesity, diabetes during pregnancy and epigenetic mechanisms that influence the developmental origins of cardiometabolic disease in the offspring. Crit Rev Clin Lab Sci 55:71–101.https://doi.org/10.1080/10408363.2017.1422109

  • Akamine EH, Marçal AC, Camporez JP, Hoshida MS, Caperuto LC, Bevilacqua E, Carvalho CRO (2010) Obesity induced by high-fat diet promotes insulin resistance in the ovary. J Endocrinol 206:65–74. https://doi.org/10.1677/JOE-09-0461

  • Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayeer S, Moore A, Rodriguez M, Kellner U, Leo-Kottler B, Auburger G, Bhattacharya SS, Wissinger B (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26:211–215.https://doi.org/10.1038/79944

  • Al-Zubaidi U, Liu J, Cinar O, Robker RL, Adhikari D, Carroll J (2019) The spatio-temporal dynamics of mitochondrial membrane potential during oocyte maturation. Mol Hum Reprod 25:695–705. https://doi.org/10.1093/molehr/gaz055

  • Al-Zubaidi U, Adhikari D, Cinar O, Zhang QH, Yuen WS, Murphy MP, Rombauts L, Robker RL, Carroll J (2021) Mitochondria-targeted therapeutics, MitoQ and BGP-15, reverse aging-associated meiotic spindle defects in mouse and human oocytes. Hum Reprod 36:771–784. https://doi.org/10.1093/humrep/deaa300

  • Amati-Bonneau P, Valentino ML, Reynier P, Gallardo ME, Bornstein B et al (2008) OPA1 mutations induce mitochondrial DNA instability and optic atrophy ‘plus’ phenotypes. Brain 131:338–351. https://doi.org/10.1093/brain/awm298

  • Anand R, Wai T, Baker MJ, Kladt N, Schauss AC, Rugarli E, Langer T (2014) The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol 204:919–929. https://doi.org/10.1083/jcb.201308006

  • Andreas E, Reid M, Zhang W, Moley KH (2019) The effect of maternal high-fat/high-sugar diet on offspring oocytes and early embryo development. Mol Hum Reprod 25:717–728. https://doi.org/10.1093/molehr/gaz049

  • Babayev E, Wang T, Szigeti-Buck K, Lowther K, Taylor HS, Horvath T, Seli E (2016) Reproductive aging is associated with changes in oocyte mitochondrial dynamics, function, and mtDNA quantity. Maturitas 93:121–130.https://doi.org/10.1016/j.maturitas.2016.06.015

  • Bach D, Pich S, Soriano FX, Vega N, Baumgartner B, Oriola J, Daugaard JR, Lloberas J, Camps M, Zierath JR et al (2003) Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem 278:17190–17197. https://doi.org/10.1074/jbc.M212754200

  • Baird DT, Collins J, Egozcue J, Evers LH, Gianaroli L, Leridon H, Sunde A, Templeton A, Van Steirteghem A, Cohen J et al (2005) Fertility and aging. Hum Reprod Update 11:261–276. https://doi.org/10.1093/humupd/dmi006

  • Ban-Ishihara R, Ishihara T, Sasaki N, Mihara K, Ishihara N (2013) Dynamics of nucleoid structure regulated by mitochondrial fission contributes to cristae reformation and release of cytochrome c. Proc Natl Acad Sci U S A 110:11863–11868. https://doi.org/10.1073/pnas.1301951110

  • Benador IY, Veliova M, Liesa M, Shirihai OS (2019) Mitochondria bound to lipid droplets: where mitochondrial dynamics regulate lipid storage and utilization. Cell Metab 29:827–835. https://doi.org/10.1016/j.cmet.2019.02.011

  • Bentov Y, Yavorska T, Esfandiari N, Jurisicova A, Casper RF (2011) The contribution of mitochondrial function to reproductive aging. J Assist Reprod Genet 28:773–783. https://doi.org/10.1007/s10815-011-9588-7

  • Biggers JD, Whittingham DG, Donahue RP (1967) The pattern of energy metabolism in the oocyte and zygote. Proc Natl Acad Sci U S A 58:560–567. https://doi.org/10.1073/pnas.58.2.560

  • Binelli M, Murphy BD (2010) Coordinated regulation of follicle development by germ and somatic cells. Reprod Fertil Dev 22:1–12. https://doi.org/10.1071/RD09218

  • Boots CE, Boudoures A, Zhang W, Drury A, Moley KH (2016) Obesity-induced oocyte mitochondrial defects are partially prevented and rescued by supplementation with co-enzyme Q10 in a mouse model. Hum Reprod 31:2090–2097. https://doi.org/10.1093/humrep/dew181

  • Boudoures AL, Saben J, Drury A, Scheaffer S, Modi Z, Zhang W, Moley KH (2017) Obesity-exposed oocytes accumulate and transmit damaged mitochondria due to an inability to activate mitophagy. Dev Biol 426:126–138. https://doi.org/10.1016/j.ydbio.2017.04.005

  • Brevini TAL, Vassena R, Francisci C, Gandolfi F (2005) Role of adenosine triphosphate, active mitochondria, and microtubules in the acquisition of developmental competence of parthenogenetically activated pig oocytes. Biol Reprod 72:1218–1223. https://doi.org/10.1095/biolreprod.104.038141

  • Brockmann K, Dreha-Kulaczewski S, Dechent P, Bönnemann C, Helms G et al (2008) Cerebral involvement in axonal Charcot-Marie-Tooth neuropathy caused by mitofusin 2 mutations. J Neurol 255:1049–1058.https://doi.org/10.1007/s00415-008-0847-1

  • Cao L, Shitara H, Horii T, Nagao Y, Imai H, Abe K, Hara T, Hayashi J-I, Yonekawa H (2007) The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat Genet 39:386–390. https://doi.org/10.1038/ng1970

  • Carelli V, Musumeci O, Caporali L, Zanna C, Morgia CL, Del Dotto V, Porcelli AM, Rugolo M, Valentino ML, Iommarini L et al (2015) Syndromic parkinsonism and dementia associated with OPA1 missense mutations. Ann Neurol 78:21–38. https://doi.org/10.1002/ana.24410

  • Carroll J, Swann K, Whittingham D, Whitaker M (1994) Spatiotemporal dynamics of intracellular [Ca2+](i) oscillations during the growth and meiotic maturation of mouse oocytes. Development 120:3507–3517

  • Carvalho KF, Machado TS, Garcia BM, Zangirolamo AF, Macabelli CH, Sugiyama FHC, Grejo MP, Augusto Neto JD, Tostes K, Ribeiro FKS et al (2020) Mitofusin 1 is required for oocyte growth and communication with follicular somatic cells. FASEB J 34:7644–7660. https://doi.org/10.1096/fj.201901761R

  • Chakrabarti R, Ji W-K, Stan RV, de Juan Sanz J, Ryan TA, Higgs HN (2018) INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division. J Cell Biol 217:251–268. https://doi.org/10.1083/jcb.201709111

  • Chen H, Chan DC (2017) Mitochondrial dynamics in regulating the unique phenotypes of cancer and stem cells. Cell Metab 26:39–48. https://doi.org/10.1016/j.cmet.2017.05.016

  • Chen H, Detmer S, a, Ewald, A. J., Griffin, E. E., Fraser, S. E. and Chan, D. C. (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160:189–200. https://doi.org/10.1083/jcb.200211046

  • Chen KH, Guo X, Ma D, Guo Y, Li Q, Yang D, Li P, Qiu X, Wen S, Xiao RP et al (2004) Dysregulation of HSG triggers vascular proliferative disorders. Nat Cell Biol 6:872–883. https://doi.org/10.1038/ncb1161

  • Chen H, Chomyn A, Chan DC (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280:26185–26192. https://doi.org/10.1074/jbc.M503062200

  • Chen H, McCaffery JM, Chan DC (2007) Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130:548–562. https://doi.org/10.1016/j.cell.2007.06.026

  • Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, Chan DC (2010) Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141:280–289. https://doi.org/10.1016/j.cell.2010.02.026

  • Chen KH, Dasgupta A, Ding J, Indig FE, Ghosh P, Longo L, D. (2014) Role of mitofusin 2 (Mfn2) in controlling cellular proliferation. FASEB J 28:382–394.https://doi.org/10.1096/fj.13-230037

  • Cho YM, Kwon S, Pak YK, Seol HW, Choi YM, Park DJ, Park KS, Lee HK (2006) Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun 348:1472–1478. https://doi.org/10.1016/j.bbrc.2006.08.020

  • Cipolat S, de Brito OM, Dal Zilio B, Scorrano L (2004) OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A 101:15927–15932. https://doi.org/10.1073/pnas.0407043101

  • Clarke HJ (2017) Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle. Wiley Interdiscip Rev Dev Biol. https://doi.org/10.1002/wdev.294

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen J, Scott R, Schimmel T, Levron J, Willadsen S (1997) Birth of infant after transfer of anucleate donor oocyte cytoplasm into recipient eggs. Lancet 350:186–187. https://doi.org/10.1016/S0140-6736(05)62353-7

  • Craven L, Alston CL, Taylor RW, Turnbull DM (2017) Recent Advances in Mitochondrial Disease. Annu Rev Genomics Hum Genet 18:257–275. https://doi.org/10.1146/annurev-genom-091416-035426

  • Dalton CM, Szabadkai G, Carroll J (2014) Measurement of ATP in single oocytes: Impact of maturation and cumulus cells on levels and consumption. J Cellular Physiol 229:353–361. https://doi.org/10.1002/jcp.24457

  • de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456:605–610. https://doi.org/10.1038/nature07534

  • de Brito OM, Scorrano L (2009) Mitofusin-2 regulates mitochondrial and endoplasmic reticulum morphology and tethering: The role of Ras. Mitochondrion 9:222–226. https://doi.org/10.1016/j.mito.2009.02.005

  • Delettre C, Leners G, Friffoin JM, Lorenzo C, Belenguer P, Pelloquin L, Grosgeorge J, Turc-Carel C, Perret E, Astarie-Dequeker C, Lasquellec L, Arnaud B, Ducommun B, Kaplan J, Hamel CP (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26:207–210. https://doi.org/10.1038/79936

  • Diez-Juan A, Rubio C, Marin C, Martinez S, Al-Asmar N, Riboldi M, Díaz-Gimeno P, Valbuena D, Simón C (2015) Mitochondrial DNA content as a viability score in human euploid embryos: less is better. Fertil Steril 104:534-541.e1. https://doi.org/10.1016/j.fertnstert.2015.05.022

  • Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM (1996) Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383:531–535.https://doi.org/10.1038/383531a0

  • Downs SM (1995) The influence of glucose, cumulus cells, and metabolic coupling on ATP levels and meiotic control in the isolated mouse oocyte. Dev Biol 167:502–512. https://doi.org/10.1006/dbio.1995.1044

  • Downs SM, Humpherson PG, Leese HJ (2002) Pyruvate utilization by mouse oocytes is influenced by meiotic status and the cumulus oophorus. Mol Reprod Dev 62:113–123. https://doi.org/10.1002/mrd.10067

  • Eppig JJ (1976) Analysis of mouse oogenesis in vitro. Oocyte isolation and the utilization of exogenous energy sources by growing oocytes. J Exp Zool 198:375–381. https://doi.org/10.1002/jez.1401980311

  • Eppig JJ, Pendola FL, Wigglesworth K, Pendola JK (2005) Mouse oocytes regulate metabolic cooperativity between granulosa cells and oocytes: Amino acid transport. Biol Reprod 73:351–357. https://doi.org/10.1095/biolreprod.105.041798

  • Fahrner JA, Liu R, Perry MS, Klein J, Chan DC (2016) A novel de novo dominant negative mutation in DNM1L impairs mitochondrial fission and presents as childhood epileptic encephalopathy. Am J Med Genet A 170:2002–2011. https://doi.org/10.1002/ajmg.a.37721

  • Fair T, Hulshof SCJ, Hyttel P, Greve T, Boland M (1997) Oocyte ultrastructure in bovine primordial to early tertiary follicles. Anat Embryol (berl) 195:327–336. https://doi.org/10.1007/s004290050052

  • Ferey JLA, Boudoures AL, Reid M, Drury A, Scheaffer S, Modi Z, Kovacs A, Pietka T, DeBosch BJ, Thompson MD et al (2019) A maternal high-fat, high-sucrose diet induces transgenerational cardiac mitochondrial dysfunction independently of maternal mitochondrial inheritance. Am J Physiol Heart Circ Physiol 316:H1202–H1210. https://doi.org/10.1152/ajpheart.00013.2019

  • Fragouli E, Spath K, Alfarawati S, Kaper F, Craig A, Michel C-E, Kokocinski F, Cohen J, Munne S, Wells D (2015) Altered levels of mitochondrial DNA are associated with female age, aneuploidy, and provide an independent measure of embryonic implantation potential. PLoS Genet 11:e1005241. https://doi.org/10.1371/journal.pgen.1005241

  • Fyfe JC, Al-Tamimi RA, Liu J, Schaffer AA, Agarwala R, Henthorn PS (2011) A novel mitofusin 2 mutation causes canine fetal-onset neuroaxonal dystrophy. Neurogenetics 12:223–232.https://doi.org/10.1007/s10048-011-0285-6

  • Garcia BM, Machado TS, Carvalho KF, Nolasco P, Nociti RP, Del Collado M, Capo Bianco MJD, Grejo MP, Neto JDA, Sugiyama FHC et al (2020) Mice born to females with oocyte-specific deletion of mitofusin 2 have increased weight gain and impaired glucose homeostasis. Mol Hum Reprod 26:938–952. https://doi.org/10.1093/molehr/gaaa071

  • Gerber S, Charif M, Chevrollier A, Chaumette T, Angebault C, Kane MS, Paris A, Alban J, Quiles M, Delettre C et al (2017) Mutations in DNM1L, as in OPA1, result in dominant optic atrophy despite opposite effects on mitochondrial fusion and fission. Brain 140:2586–2596. https://doi.org/10.1093/brain/awx219

  • Giacomello M, Pyakurel A, Glytsou C, Scorrano L (2020) The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol 21:204–224. https://doi.org/10.1038/s41580-020-0210-7

  • Gordaliza-Alaguero I, Cantó C, Zorzano A (2019) Metabolic implications of organelle–mitochondria communication. EMBO Rep 20:1–27. https://doi.org/10.15252/embr.201947928

  • Gustafsson CM, Falkenberg M, Larsson NG (2016) Maintenance and Expression of Mammalian Mitochondrial DNA. Annu Rev Biochem 85:133–160. https://doi.org/10.1146/annurev-biochem-060815-014402

  • Harris SE, Leese HJ, Gosden RG, Picton HM (2009) Pyruvate and oxygen consumption throughout the growth and development of murine oocytes. Mol Reprod Dev 76:231–238. https://doi.org/10.1002/mrd.20945

  • Hartmann B, Wai T, Hu H, Macvicar T, Musante L, Fischer-Zirnsak B, Stenzel W, Gräf R, van den Heuvel L, Ropers H-H et al (2016) Homozygous YME1L1 mutation causes mitochondriopathy with optic atrophy and mitochondrial network fragmentation. Elife 5:e16078. https://doi.org/10.7554/eLife.16078

  • Hashimoto S, Morimoto N, Yamanaka M, Matsumoto H, Yamochi T, Goto H, Inoue M, Nakaoka Y, Shibahara H, Morimoto Y (2017) Quantitative and qualitative changes of mitochondria in human preimplantation embryos. J Assist Reprod Genet 34:573–580. https://doi.org/10.1007/s10815-017-0886-6

  • Hou X, Zhu S, Zhang H, Li C, Qiu D, Ge J, Guo X, Wang Q (2019) Mitofusin1 in oocyte is essential for female fertility. Redox Biol 21:101110. https://doi.org/10.1016/j.redox.2019.101110

  • Hudson G, Amati-Bonneau P, Blakely EL, Stewart JD, He L et al (2008) Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder of mtDNA maintenance. Brain 131:329–337. https://doi.org/10.1093/brain/awm272

  • Ishihara N, Nomura M, Jofuku A, Kato H, Suzuki SO, Masuda K, Otera H, Nakanishi Y, Nonaka I, Goto Y-I et al (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11:958–966. https://doi.org/10.1038/ncb1907

  • Ishihara T, Ban-Ishihara R, Maeda M, Matsunaga Y, Ichimura A, Kyogoku S, Aoki H, Katada S, Nakada K, Nomura M et al (2015) Dynamics of mitochondrial DNA nucleoids regulated by mitochondrial fission is essential for maintenance of homogeneously active mitochondria during neonatal heart development. Mol Cell Biol 35:211–223.https://doi.org/10.1128/MCB.01054-14

  • Jansen RPS, De Boer K (1998) The bottleneck: mitochondrial imperatives in oogenesis and ovarian follicular fate. Mol Cell Endocrinol 145:81–88. https://doi.org/10.1016/s0303-7207(98)00173-7

  • Johnson MT, Freeman EA, Gardner DK, Hunt PA (2007) Oxidative metabolism of pyruvate is required for meiotic maturation of murine oocytes in vivo1. Biol Reprod 77:2–8. https://doi.org/10.1095/biolreprod.106.059899

  • Jungheim ES, Schoeller EL, Marquard KL, Louden ED, Schaffer JE, Moley KH (2010) Diet-induced obesity model: abnormal oocytes and persistent growth abnormalities in the offspring. Endocrinol 151:4039–4046

  • Kakimoto PA, Kowaltowski AJ (2016) Effects of high fat diets on rodent liver bioenergetics and oxidative imbalance. Redox Biol 8:216–225. https://doi.org/10.1016/j.redox.2016.01.009

  • Keleher MR, Zaidi R, Shah S, Oakley ME, Pavlatos C, Idrissi SE, Xing X, Li D, Wang T, Cheverud JM (2018) Maternal high-fat diet associated with altered gene expression, DNA methylation, and obesity risk in mouse offspring. PLoS ONE 13:1–28. https://doi.org/10.1371/journal.pone.0192606

  • Kleele T, Rey T, Winter J, Zaganelli S, Mahecic D, Perreten Lambert H, Ruberto FP, Nemir M, Wai T, Pedrazzini T et al (2021) Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature 593:435–439. https://doi.org/10.1038/s41586-021-03510-6

  • Kobayashi T, Surani MA (2018) On the origin of the human germline. Development 145:2–5. https://doi.org/10.1242/dev.150433

  • Koch J, Feichtinger RG, Freisinger P, Pies M, Schrödl F, Iuso A, Sperl W, Mayr JA, Prokisch H, Haack TB (2016) Disturbed mitochondrial and peroxisomal dynamics duet to loss of MFF causes Leigh-like encephalopathy, optic atrophy and peripheral neuropathy. J Med Genet 53:270–278. https://doi.org/10.1136/jmedgenet-2015-103500

  • Korobova F, Ramabhadran V, Higgs HN (2013) An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339:464–467. https://doi.org/10.1126/science.1228360

  • Krasich R, Copeland WC (2017) DNA polymerases in the mitochondria: a critical review of the evidence. Front Biosci (landmark Ed) 22:692–709. https://doi.org/10.2741/4510

  • Krisher RL, Bavister BD (1998) Responses of oocytes and embryos to the culture environment. Theriogenology 49:103–114. https://doi.org/10.1016/s0093-691x(97)00405-6

  • Kristensen SG, Pors SE, Andersen CY (2017) Improving oocyte quality by transfer of autologous mitochondria from fully grown oocytes. Hum Reprod 32:725–732. https://doi.org/10.1093/humrep/dex043

  • Kruip TAM, Cran DG, van Beneden TH, Dieleman SJ (1983) Structural changes in bovine oocytes during final maturation in vivo. Gam Res 8:29–47

  • Labarta E, de Los Santos MJ, Escribá MJ, Pellicer A, Herraiz S (2019a) Mitochondria as a tool for oocyte rejuvenation. Fertil Steril 111:219–226. https://doi.org/10.1016/j.fertnstert.2018.10.036

  • Labarta E, de Los Santos MJ, Herraiz S, Escribá MJ, Marzal A, Buigues A, Pellicer A (2019b) Autologous mitochondrial transfer as a complementary technique to intracytoplasmic sperm injection to improve embryo quality in patients undergoing in vitro fertilization-a randomized pilot study. Fertil Steril 111:86–96. https://doi.org/10.1016/j.fertnstert.2018.09.023

  • Lewis SC, Uchiyama LF, Nunnari J (2016) ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science 353:aaf5549. https://doi.org/10.1126/science.aaf5549

  • Lieber T, Jeedigunta SP, Palozzi JM, Lehmann R, Hurd TR (2019) Mitochondrial fragmentation drives selective removal of deleterious mtDNA in the germline. Nature 570:380–384. https://doi.org/10.1038/s41586-019-1213-4

  • Liu K, Zhang H, Risal S, Gorre N, Busayavalasa K, Li X, Shen Y, Bosbach B, Brännström M (2014) Somatic cells initiate primordial follicle activation and govern the development of dormant oocytes in mice. Curr Biol 24:2501–2508. https://doi.org/10.1016/j.cub.2014.09.023

  • Liu Q, Kang L, Wang L, Zhang L, Xiang W (2016a) Mitofusin 2 regulates the oocytes development and quality by modulating meiosis and mitochondrial function. Sci Rep 6:30561. https://doi.org/10.1038/srep30561

  • Liu X-M, Zhang Y-P, Ji S-Y, Li B-T, Tian X, Li D, Tong C, Fan H-Y (2016b) Mitoguardin-1 and -2 promote maturation and the developmental potential of mouse oocytes by maintaining mitochondrial dynamics and functions. Oncotarget 7:1155–1167. https://doi.org/10.18632/oncotarget.6713

  • Losón OC, Song Z, Chen H, Chan DC (2013) Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell 24:659–667. https://doi.org/10.1091/mbc.E12-10-0721

  • Ma H, Folmes CDL, Wu J, Morey R, Mora-Castilla S, Ocampo A, Ma L, Poulton J, Wang X, Ahmed R et al (2015a) Metabolic rescue in pluripotent cells from patients with mtDNA disease. Nature 524:234–238. https://doi.org/10.1038/nature14546

  • Ma L, Chang Y, Yu L, He W, Liu Y (2015b) Pro-apoptotic and anti-proliferative effects of mitofusin-2 via PI3K/Akt signaling in breast cancer cells. Oncol Lett 10:3816–3822. https://doi.org/10.3892/ol.2015.3748

  • Magnusson C, Hillensjö T, Hamberger L, Nilsson L (1986) Oxygen consumption by human oocytes and blastocysts grown in vitro. Hum Reprod 1:183–184. https://doi.org/10.1093/oxfordjournals.humrep.a136377

  • Mahdaviani K, Benador IY, Su S, Gharakhanian RA, Stiles L, Trudeau KM, Cardamone M, Enríquez-Zarralanga V, Ritou E, Aprahamian T et al (2017) Mfn2 deletion in brown adipose tissue protects from insulin resistance and impairs thermogenesis. EMBO Rep 18:1123–1138. https://doi.org/10.15252/embr.201643827

  • Manor, U., Bartholomew, S., Golani, G., Christenson, E., Kozlov, M., Higgs, H., Spudich, J. and Lippincott-Schwartz, J. (2015). A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division. eLife 4. https://doi.org/10.7554/eLife.08828

  • Marei WFA, Raemdonck GV, Baggerman G, Bols PEJ, Leroy JLMR (2019) Proteomic changes in oocytes after in vitro maturation in lipotoxic conditions are different from those in cumulus cells. Sc Rep 9:3673. https://doi.org/10.1038/s41598-019-40122-7

  • Marei WFA, Smits A, Mohey-Elsaeed O, Pintelon I, Ginneberge D, Bols PEJ, Moerloose K, Leroy JLMR (2020) Differential effects of high fat diet-induced obesity on oocyte mitochondrial functions in inbred and outbred mice. Sci Rep 10:1–14. https://doi.org/10.1038/s41598-020-66702-6

  • May-Panloup P, Boucret L, Chao de la Barca J-M, Desquiret-Dumas V, Ferré-L’Hotellier V, Morinière C, Descamps P, Procaccio V, Reynier P (2016) Ovarian ageing: the role of mitochondria in oocytes and follicles. Hum Reprod Update 22:725–743. https://doi.org/10.1093/humupd/dmw028

  • Mdaki KS, Larsen TD, Wachal AL, Schimelpfenig MD, Weaver LJ, Dooyema SDR, Louwagie EJ, Baack ML (2016) Maternal high-fat diet impairs cardiac function in offspring of diabetic pregnancy through metabolic stress and mitochondrial dysfunction. Am J Physiol Heart Circ Physiol 310:H681–H692. https://doi.org/10.1152/ajpheart.00795.2015

  • Miller B, Kim SJ, Kumagai H, Mehta HH, Xiang W, Liu J, Yen K, Cohen P (2020) Peptides derived from small mitochondrial open reading frames: Genomic, biological, and therapeutic implications. Exp Cell Res 393:112056. https://doi.org/10.1016/j.yexcr.2020.112056

  • Misko AL, Sasaki Y, Tuck E, Milbrandt J, Baloh RH (2012) Mitofusin2 Mutations Disrupt Axonal Mitochondrial Positioning and Promote Axon Degeneration. J Neurosci 32:4145–4155. https://doi.org/10.1523/JNEUROSCI.6338-11.2012

  • Motta PM, Nottola SA, Makabe S, Heyn R (2000) Mitochondrial morphology in human fetal and adult female germ cells. Hum Reprod 15(Suppl 2):129–147. https://doi.org/10.1093/humrep/15.suppl_2.129

  • Mourier A, Motori E, Brandt T, Lagouge M, Atanassov I, Galinier A, Rappl G, Brodesser S, Hultenby K, Dieterich C et al (2015) Mitofusin 2 is required to maintain mitochondrial coenzyme Q levels. J Cell Biol 208:429–442. https://doi.org/10.1083/jcb.201411100

  • Muñoz JP, Ivanova S, Sánchez-Wandelmer J, Martínez-Cristóbal P, Noguera E, Sancho A, Díaz-Ramos A, Hernández-Alvarez MI, Sebastián D, Mauvezin C et al (2014) Mfn2 modulates the UPR and mitochondrial function via repression of PERK. EMBO J 33:171. https://doi.org/10.1038/emboj.2013.168

  • Murrin CM, Kelly GE, Tremblay RE, Kelleher CC (2012) Body mass index and height over three generations: Evidence from the Lifeways cross-generational cohort study. BMC Public Health 12:81. https://doi.org/10.1186/1471-2458-12-81

  • Ngoh GA, Papanicolaou KN, Walsh K (2012) Loss of mitofusin 2 promotes endoplasmic reticulum stress. J Biol Chem 287:20321–20332. https://doi.org/10.1074/jbc.M112.359174

  • Oestreich AK, Moley KH (2017) Developmental and Transmittable Origins of Obesity-Associated Health Disorders. Trends Genet 33:399–407. https://doi.org/10.1016/j.tig.2017.03.008

  • Ota A, Ishihara T, Ishihara N (2020) Mitochondrial nucleoid morphology and respiratory function are altered in Drp1-deficient HeLa cells. J Biochem 167:287–294. https://doi.org/10.1093/jb/mvz112

  • Ou XH, Zhu CC, Sun SC (2019) Effects of obesity and diabetes on the epigenetic modification of mammalian gametes. J Cellular Physiol 234:7847–7855

  • Palmer CS, Elgass KD, Parton RG, Osellame LD, Stojanovski D, Ryan MT (2013) Adaptor proteins MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission. J Biol Chem 288:27584–27593. https://doi.org/10.1074/jbc.M113.479873

  • Pasquariello R, Ermisch AF, Silva E, McCormick S, Logsdon D, Barfield JP, Schoolcraft WB, Krisher RL (2019) Alterations in oocyte mitochondrial number and function are related to spindle defects and occur with maternal aging in mice and humans†. Biol Reprod 100:971–981. https://doi.org/10.1093/biolre/ioy248

  • Pedersen T, Peters H (1968) Proposal for a classification of oocytes and follicles in the mouse ovary. J Reprod Fertil 17:555–557. https://doi.org/10.1530/jrf.0.0170555

  • Pernas L, Scorrano L (2016) Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol 78:505–531. https://doi.org/10.1146/annurev-physiol-021115-105011

  • Pich S, Bach D, Briones P, Liesa M, Camps M, Testar X, Palacín M, Zorzano A (2005) The Charcot-Marie-Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. Hum Mol Genet 14:1405–1415. https://doi.org/10.1093/hmg/ddi149

  • Porterfield DM, Trimarchi JR, Keefe DL, Smith PJ (1998) Characterization of oxygen and calcium fluxes from early mouse embryos and oocytes. Biol Bull 195:208–209. https://doi.org/10.2307/1542842

  • Pozzi A, Dowling DK, Sloan D (2019) The genomic origins of small mitochondrial RNAs: are they transcribed by the mitochondrial dna or by mitochondrial pseudogenes within the nucleus (NUMTs)? Genome Biol Evol 11:1883–1896. https://doi.org/10.1093/gbe/evz132

  • Prigione A, Rohwer N, Hoffmann S, Mlody B, Drews K, Bukowiecki R, Blümlein K, Wanker EE, Ralser M, Cramer T et al (2014) HIF1 alpha modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem Cells 32:364–376. https://doi.org/10.1002/stem.1552

  • Rath, S., Sharma, R., Gupta, R., Ast, T., Chan, C., Durham, T. J., Goodman, R. P., Grabarek, Z., Haas, M. E., Hung, W. H. W., et al. (2020). MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res 1–7. https://doi.org/10.1093/nar/gkaa1011

  • Rattanatray L, MacLaughlin SM, Kleemann DO, Walker SK, Muhlhausler BS, McMillen IC (2010) Impact of maternal periconceptional overnutrition on fat mass and expression of adipogenic and lipogenic genes in visceral and subcutaneous fat depots in the postnatal lamb. Endocrinology 151:5195–5205. https://doi.org/10.1210/en.2010-0501

  • Reddy P, Liu L, Adhikari D, Jagarlamudi K, Rajareddy S, Shen Y, Du C, Tang W, Hämäläinen T, Peng SL et al (2008) Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science 319:611–613. https://doi.org/10.1126/science.1152257

  • Reynolds RM, Allan KM, Raja EA, Bhattacharya S, McNeill G, Hannaford PC, Sarwar N, Lee AJ, Bhattacharya S, Norman JE (2013) Maternal obesity during pregnancy and premature mortality from cardiovascular event in adult offspring: follow-up of 1 323 275 person years. BMJ 347:f4539. https://doi.org/10.1136/bmj.f4539

  • Richani D, Dunning KR, Thompson JG, Gilchrist RB (2021) Metabolic co-dependence of the oocyte and cumulus cells: essential role in determining oocyte developmental competence. Hum Reprod Update 27:27–47. https://doi.org/10.1093/humupd/dmaa043

  • Rimon-Dahari N, Yerushalmi-Heinemann L, Alyagor L, Dekel N (2016) Ovarian folliculogenesis. Results Probl Cell Differ 58:167–190. https://doi.org/10.1007/978-3-319-31973-5_7

  • Rouzier C, Bannwarth S, Chaussenot A, Chevrollier A, Verschueren A et al (2012) The MFN2 gene is responsible for mitochondrial DNA instability and optic atrophy ‘plus’ phenotype. Brain 135:23–34. https://doi.org/10.1093/brain/awr323

  • Ruager-Martin R, Hyde MJ, Modi N (2010) Maternal obesity and infant outcomes. Early Hum Dev 86:715–722. https://doi.org/10.1016/j.earlhumdev.2010.08.007

  • Ruebel ML, Cotter M, Sims CR, Moutos DM, Badger TM, Cleves MA, Shankar K, Andres A (2017) Obesity modulates inflammation and lipid metabolism oocyte gene expression: a single-cell transcriptome perspective. J Clin Endocrinol Metab 102:2029–2038. https://doi.org/10.1210/jc.2016-3524

  • Saben JL, Boudoures AL, Asghar Z, Cusumano A, Scheaffer S, Moley KH, Saben JL, Boudoures AL, Asghar Z, Thompson A et al (2016) Mitochondrial dysfunction via germline changes across three generations maternal metabolic syndrome programs mitochondrial dysfunction via germline changes across three generations. Cell Rep 16:1–8. https://doi.org/10.1016/j.celrep.2016.05.065

  • Saita S, Nolte H, Fiedler KU, Kashkar H, Venne AS, Zahedi RP, Krüger M, Langer T (2017) PARL mediates Smac proteolytic maturation in mitochondria to promote apoptosis. Nat Cell Biol 19:318–328. https://doi.org/10.1038/ncb3488

  • Santos TA, El Shourbagy S, St. John, J. C. (2006) Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil Steril 85:584–591. https://doi.org/10.1016/j.fertnstert.2005.09.017

  • Sawyer SL, Ng AC-H, Innes AM, Wagner JD, Dyment DA et al (2015) Homozygous mutations in MFN2 cause multiple symmetric lipomatosis associated with neuropathy. Hum Mol Genet 24:5109–5114. https://doi.org/10.1093/hmg/ddv229

  • Schaaf CP, Blazo M, Lewis RA, Tonini RE, Takei H, Wang J, Wong L-J, Scaglia F (2011) Early-onset severe neuromuscular phenotype associated with compound heterozygosity foor OPA1 mutations. Mol Genet Metab 103:383–387. https://doi.org/10.1016/j.ymgme.2011.04.018

  • Schneeberger M, Dietrich MO, Sebastián D, Imbernón M, Castaño C, Garcia A, Esteban Y, Gonzalez-Franquesa A, Rodríguez IC, Bortolozzi A et al (2013) Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell 155:172–187. https://doi.org/10.1016/j.cell.2013.09.003

  • Schwartz D, Mayaux MJ (1982) Female fecundity as a function of age: results of artificial insemination in 2193 nulliparous women with azoospermic husbands. Federation CECOS New Engl J Med 306:404–406. https://doi.org/10.1056/NEJM198202183060706

  • Sebastian D, Hernandez-Alvarez MI, Segales J, Sorianello E, Munoz JP, Sala D, Waget A, Liesa M, Paz JC, Gopalacharyulu P et al (2012) Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc Natl Acad Sci U S A 109:5523–5528. https://doi.org/10.1073/pnas.1108220109

  • Sebastián D, Sorianello E, Segalés J, Irazoki A, Ruiz-Bonilla V, Sala D, Planet E, Berenguer-Llergo A, Muñoz JP, Sánchez-Feutrie M et al (2016) Mfn2 deficiency links age-related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway. EMBO J 35:e201593084. https://doi.org/10.15252/embj.201593084

  • Seli E (2016) Mitochondrial DNA as a biomarker for in-vitro fertilization outcome. Curr Opin Obstet Gynecol 28:158–163. https://doi.org/10.1097/GCO.0000000000000274

  • Shamseldin HE, Alshammari M, Al-Sheddi T, Salih MA, Alkhalidi H, Kentab A, Repetto GM, Hashem M, Alkuraya FS (2012) Genomic analysis of mitochondrial diseases in a consanguineous population reveals novel candidate disease genes. J Med Genet 49:234–241. https://doi.org/10.1136/jmedgenet-2012-100836

  • Shankar K, Harrell A, Liu X, Gilchrist JM, Ronis MJJ, Badger TM (2008) Maternal obesity at conception programs obesity in the offspring. Am J Physiol Regul Integr Comp Physiol 294:528–538. https://doi.org/10.1152/ajpregu.00316.2007

  • Sheffer R, Douiev L, Edvardson S, Avraham S, Tamimi K, Soiferman D, Meiner V, Saada A (2016) Postnatal microcephaly and pain insensitivity due to a de novo heterozygous DNM1L mutation causing impaired mitochondrial fission and function. Am J Med Genet A 170:1603–1607. https://doi.org/10.1002/ajmg.a.37624

  • Shen Q, Yamano K, Head BP, Kawajiri S, Cheung JT et al (2014) Mutations in Fis1 disrupt orderly disposal of defective mitochondria. Mol Biol Cell 25:145–159. https://doi.org/10.1091/mbc.E13-09-0525

  • Sirard M-A (2019) Distribution and dynamics of mitochondrial DNA methylation in oocytes, embryos and granulosa cells. Sci Rep 9:11937. https://doi.org/10.1038/s41598-019-48422-8

  • Son MJ, Kwon Y, Son M-Y, Seol B, Choi H-S, Ryu S-W, Choi C, Cho YS (2015) Mitofusins deficiency elicits mitochondrial metabolic reprogramming to pluripotency. Cell Death Differ 22:1–13. https://doi.org/10.1038/cdd.2015.43

  • Spiegel R, Saada A, Flannery PJ, Burté F, Soiferman D, Khayat M, Eisner V, Vladovski R, Taylor RW, Bindoff LA et al (2016) Fatal infantile mitochonddrial encephalomyopathy, hypertrophic cardiomyopathy and optic artrophy associated with a homozygous OPA1 mutation. J Med Genet 53:127–131. https://doi.org/10.1136/jmedgenet-2015-103361

  • Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 20:745–754. https://doi.org/10.1038/s41556-018-0124-1

  • Stewart JB, Chinnery PF (2020) Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nature Rev Genet 22:106–118. https://doi.org/10.1038/s41576-020-00284-x

  • Stojkovic M, Machado SA, Stojkovic P, Zakhartchenko V, Hutzler P, Gonçalves PB, Wolf E (2001) Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol Reprod 64:904–909. https://doi.org/10.1095/biolreprod64.3.904

  • Su Y-Q, Sugiura K, Wigglesworth K, O’Brien MJ, Affourtit JP, Pangas SA, Matzuk MM, Eppig JJ (2007) Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development 135:111–121. https://doi.org/10.1242/dev.009068

  • Su YQ, Sugiura K, Eppig JJ (2009) Mouse oocyte control of granulosa cell development and function: Paracrine regulation of cumulus cell metabolism. Semin Reprod Med 27:32–42. https://doi.org/10.1055/s-0028-1108008

  • Sugiura K, Su Y-Q, Diaz FJ, Pangas SA, Sharma S, Wigglesworth K, O’Brien MJ, Matzuk MM, Shimasaki S, Eppig JJ (2007) Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development 134:2593–2603. https://doi.org/10.1242/dev.006882

  • Tarazona AM, Rodríguez JI, Restrepo LF, Olivera-Angel M (2006) Mitochondrial activity, distribution and segregation in bovine oocytes and in embryos produced in vitro. Reprod Domest Anim 41:5–11. https://doi.org/10.1111/j.1439-0531.2006.00615.x

  • Thompson JG, Partridge RJ, Houghton FD, Cox CI, Leese HJ (1996) Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos. J Reprod Fertil 106:299–306. https://doi.org/10.1530/jrf.0.1060299

  • Tilly JL, Sinclair DA (2013) Germline energetics, aging, and female infertility. Cell Metab 17:838–850. https://doi.org/10.1016/j.cmet.2013.05.007

  • Trebichalská Z, Kyjovská D, Kloudová S, Otevřel P, Hampl A, Holubcová Z (2021) Cytoplasmic maturation in human oocytes: An ultrastructural study. Biol Reprod 104:106–116. https://doi.org/10.1093/biolre/ioaa174

  • Trimarchi JR, Liu L, Porterfield DM, Smith PJ, Keefe DL (2000) Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantation mouse embryos. Biol Reprod 62:1866–1874. https://doi.org/10.1095/biolreprod62.6.1866

  • Tubbs E, Theurey P, Vial G, Bendridi N, Bravard A, Chauvin MA, Ji-Cao J, Zoulim F, Bartosch B, Ovize M et al (2014) Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes 63:3279–3294. https://doi.org/10.2337/db13-1751

  • Twig G, Elorza A, Molina AJA, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G et al (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–46. https://doi.org/10.1038/sj.emboj.7601963

  • Udagawa O, Ishihara T, Maeda M, Matsunaga Y, Tsukamoto S, Kawano N, Miyado K, Shitara H, Yokota S, Nomura M et al (2014) Mitochondrial fission factor Drp1 maintains oocyte quality via dynamic rearrangement of multiple organelles. Curr Biol 24:2451–2458. https://doi.org/10.1016/j.cub.2014.08.060

  • Van Blerkom J, Davis PW, Lee J (1995) ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Hum Reprod 10:415–424. https://doi.org/10.1093/oxfordjournals.humrep.a135954

  • Van Blerkom J, Davis P, Alexander S (2000) Differential mitochondrial distribution in human pronuclear embryos leads to disproportionate inheritance between blastomeres: relationship to microtubular organization, ATP content and competence. Hum Reprod 15:2621–2633. https://doi.org/10.1093/humrep/15.12.2621

  • Van Noord-Zaadstra BM, Looman CWN, Alsbach H, Habbema JDF, Te Velde ER, Karbaat J (1991) Delaying childbearing: effect of age on fecundity and outcome of pregnancy. Bmjl 302:1361–1365. https://doi.org/10.1136/bmj.302.6789.1361

  • Vanstone JR, Smith AM, McBride S, Naas T, Holcik M et al (2016) DNM1L-related mitochondrial fission defect presenting as refractory epilepsy. Eur J Hum Genet 24:1084–1088. https://doi.org/10.1038/ejhg.2015.243

  • Von Spiczak S, Helbig KL, Shinde DN, Huether R, Pendziwiat M et al (2017) DNM1 encephalopathy: a new disease of vesicle fission. Neurology 89:385–394. https://doi.org/10.1212/WNL.0000000000004152

  • Wai T, Teoli D, Shoubridge EA (2008) The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat Genet 40:1484–1488. https://doi.org/10.1038/ng.258

  • Wai T, Ao A, Zhang X, Cyr D, Dufort D, Shoubridge EA (2010) The role of mitochondrial DNA copy number in mammalian fertility. Biol Reprod 83:52–62. https://doi.org/10.1095/biolreprod.109.080887

  • Wakai T, Harada Y, Miyado K, Kono T (2014) Mitochondrial dynamics controlled by mitofusins define organelle positioning and movement during mouse oocyte maturation. Mol Hum Reprod 20:1090–1100. https://doi.org/10.1093/molehr/gau064

  • Wang T, Babayev E, Jiang Z, Li G, Zhang M, Esencan E, Horvath T, Seli E (2018a) Mitochondrial unfolded protein response gene Clpp is required to maintain ovarian follicular reserve during aging, for oocyte competence, and development of pre-implantation embryos. Aging Cell 17:1–13. https://doi.org/10.1111/acel.12784

  • Wang Q, Tang S-B, Song X-B, Deng T-F, Zhang T-T, Yin S, Luo S-M, Shen W, Zhang C-L, Ge Z-J (2018b) High-glucose concentrations change DNA methylation levels in human IVM oocytes. Hum Reprod 33:474–481. https://doi.org/10.1093/humrep/dey006

  • Wassarman PM, Josefowicz WJ (1978) Oocyte development in the mouse: An ultrastructural comparison of oocytes isolated at various stages of growth and meiotic competence. J Morphol 156:209–235. https://doi.org/10.1002/jmor.1051560206

  • Waterham HR, Koster J, van Roermund CW, Mooyer PA, Wanders RJ, Leonard JV (2007) A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med 356:1736–1741. https://doi.org/10.1056/NEJMoa064436

  • Woods DC, Tilly JL (2015) Autologous germline mitochondrial energy transfer (AUGMENT) in human assisted reproduction. Semin Reprod Med 33:410–421. https://doi.org/10.1055/s-0035-1567826

  • Wright VC, Chang J, Jeng G, Macaluso M, Centers for Disease Control and Prevention (CDC) (2008) Assisted reproductive technology surveillance–United States, 2005. MMWR Surveill Summ 57:1–23

  • Wu LLY, Dunning KR, Yang X, Russell DL, Lane M, Norman RJ, Robker RL (2010) High-fat diet causes lipotoxicity responses in cumulus - Oocyte complexes and decreased fertilization rates. Endocrinology 151:5438–5445. https://doi.org/10.1210/en.2010-0551

  • Wu LL, Russell DL, Wong SL, Chen M, Tsai T-S, St John JC, Norman RJ, Febbraio MA, Carroll J, Robker RL (2015) Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Development 142:681–691. https://doi.org/10.1242/dev.114850

  • Wyman A, Pinto AB, Sheridan R, Moley KH (2008) One-cell zygote transfer from diabetic to nondiabetic mouse results in congenital malformations and growth retardation in offspring. Endocrinology 149:466–469. https://doi.org/10.1210/en.2007-1273

  • Yu Y, Dumollard R, Rossbach A, Lai FA, Swann K (2010) Redistribution of mitochondria leads to bursts of ATP production during spontaneous mouse oocyte maturation. J Cell Physiol 224:672–680. https://doi.org/10.1002/jcp.22171

  • Zhang H, Liu K (2015) Cellular and molecular regulation of the activation of mammalian primordial follicles: somatic cells initiate follicle activation in adulthood. Hum Reprod Update 21:779–786. https://doi.org/10.1093/humupd/dmv037

  • Zhang Y, Liu X, Bai J, Tian X, Zhao X, Liu W, Duan X, Shang W, Fan HY, Tong C (2016a) Mitoguardin regulates mitochondrial fusion through mitopld and is required for neuronal homeostasis. Mol Cell 61:111–124. https://doi.org/10.1016/j.molcel.2015.11.017

  • Zhang J-H, Zhang T, Gao S-H, Wang K, Yang X-Y, Mo F-F, Na Yu, An T, Li Y-F, Hu J-W et al (2016b) Mitofusin-2 is required for mouse oocyte meiotic maturation. Sci Rep 6:30970. https://doi.org/10.1038/srep30970

  • Zhang M, Bener MB, Jiang Z, Wang T, Esencan E, Scott R III, Horvath T, Seli E (2019a) Mitofusin 1 is required for female fertility and to maintain ovarian follicular reserve. Cell Death Dis 10:560. https://doi.org/10.1038/s41419-019-1799-3

  • Zhang M, Bener MB, Jiang Z, Wang T, Esencan E, Scott R, Horvath T, Seli E (2019b) Mitofusin 2 plays a role in oocyte and follicle development, and is required to maintain ovarian follicular reserve during reproductive aging. Aging 11:3919–3938. https://doi.org/10.18632/aging.102024

  • Zhao L, Lu T, Gao L, Fu X, Zhu S, Hou Y (2017) Enriched endoplasmic reticulum-mitochondria interactions result in mitochondrial dysfunction and apoptosis in oocytes from obese mice. J A Sci Biotechnol 8:62. https://doi.org/10.1186/s40104-017-0195-z

  • Zhu D, Kennerson ML, Walizada G, Züchner S, Vance JM, Nicholson GA (2005) Charcot–Marie–Tooth with pyramidal signs is genetically heterogeneous: families with and without MFN2 mutations. Neurology 65:496–497. https://doi.org/10.1212/01.wnl.0000171345.62270.29

  • Zorzano A, Hernández-Alvarez MI, Sebastián D, Muñoz JP (2015) Mitofusin 2 as a driver that controls energy metabolism and insulin signaling. Antioxid Redox Signal 22:1020–1031. https://doi.org/10.1089/ars.2014.6208

  • Züchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, Zappia M, Nelis E, Patitucci A, Senderek J et al (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36:449–451. https://doi.org/10.1038/ng1341

Download references

Acknowledgements

Marcos R. Chiaratti is funded by the São Paulo Research Foundation (FAPESP/Brazil – grants # 2017/04372-0 and 2020/15412-6), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/Brazil – finance code 001), and the Academy of Medical Sciences-Newton Advanced Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Roberto Chiaratti.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiaratti, M.R. Uncovering the important role of mitochondrial dynamics in oogenesis: impact on fertility and metabolic disorder transmission. Biophys Rev 13, 967–981 (2021). https://doi.org/10.1007/s12551-021-00891-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-021-00891-w

Keywords

Navigation