Skip to main content
Log in

A computational model for cardiovascular hemodynamics and protein transport phenomena

  • Original Paper
  • Published:
Health and Technology Aims and scope Submit manuscript

Abstract

The hemodynamics plays a key role in the transport processes, in the blood stream, and thus, on the accumulation and deposition of lipids and medication on the vessel’s wall. Therefore, understanding the hemodynamics of the arterial veins can advance the understanding of transport phenomena and prediction of deposition and buildup of the low-density lipoproteins (LDL) and particulate medication, on the arterial surfaces. Previous studies have showed that for pulsatile flow, laminar-turbulent flow transition may occur, particularly during intense exercises. Experimental and computational studies, of hemodynamics and transport phenomena, pose significant challenges due to the complex aorta’s geometry and arterial fluid dynamics. In the present study, we propose a large-eddy simulation (LES), computational approach, to carry out the hemodynamics and medication dispersion and deposition studies, inside the descending aorta. The analysis reveals that the flow separation causes a preferential deposition and build-up of low-density lipoproteins (LDL) on the arterial surface. Our study also shows that the flow boundary-layer separation is associated with an increase in deposition of the low-density lipoproteins. The analysis reveals the presence of Dean vortices, inside the aorta branches, which contribute to the reduction of the deposition and build-up of low-density lipoproteins on the arterial surfaces. The analysis of medication dispersion and deposition, inside the descending aorta, shows that the total medication deposition increases with the increase of particle size and density. Particles of fiber-like shape are more prone to deposition, and this is due to the fact that fiber-like particles align perfectly with the flow streamlines. Thus, the interaction of complex turbulent eddies with vessel’s wall causes medication deposition. The research shows that LES is a promising tool in the analysis of hemodynamics and medication transport and therefore, it may assist medical planning by providing surgeons with the elements of the blood flow such as, pressure, velocity, vorticity, wall-shear stresses, which cannot be measured in vivo and obtained with imaging techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43

Similar content being viewed by others

References

  1. Heiberg E, Sjogren J, Ugander M, Carlsson M, Engblom H, Arheden H. Design and validation of Segment-freely available software for cardiovascular image analysis. BMC Med Imaging. 2010;10:1.

    Article  Google Scholar 

  2. Karino T, Goldsmith HL, Motomiya M, Mabuchi S, Sohara Y. Flow patterns in vessels of simple and complex geometries. Ann N Y Acad Sci. 1987;516:422–41.

    Article  Google Scholar 

  3. Kolandavel MK, Fruend ET, Ringgaard S, Walker PG. The effects of time varying curvature on species transport in coronary arteries. Ann Biomed Eng. 2006;34(1820–1832):2006.

    Google Scholar 

  4. Liu X, Fan Y, Deng X, Zhan F. Effect of non-Newtonian and pulsatile blood flow on mass transport in human aorta. J Biomech. 2011;44:1123–31.

    Article  Google Scholar 

  5. Tarbell JM. Mass transport in arteries and the localization of atherosclerosis. Annu Rev Biomed Eng. 2011;5:79–118.

    Article  Google Scholar 

  6. Yoganathan AP, Chandran KB, Sotiropoulos F. Flow in prosthetic heart valves: state-of-the-art and future directions. Ann Biomed Eng. 2005;33:1689–94.

    Article  Google Scholar 

  7. Fazli S, Shirani E, Sadeghi MR. Numerical simulation of LDL mass transfer in a common carotid artery under pulsatile flow. J Biomech. 2011;44:68–76.

    Article  Google Scholar 

  8. Lui X, Pu F, Fan Y, Deng X, Li D, Li S. A numerical study on the flow of blood and the transport of LDL in the human aorta: the physiological significance of the helical flow in the aortic arch. Am J Physiol Heart Circ Physiol. 2009;297:163–170.

  9. Paul MC, Mamun Molla M, Roditi G. Large-eddy simulation of pulsatile blood flow. Med Eng Phys. 2009;31:153–9.

    Article  Google Scholar 

  10. Soulis JV, Fytanidis DK, Papaioannou VC, Giannoglou GD. Wall shear stress on LDL accumulation in human RCAs. Med Eng Phys. 2010;32:867–77.

    Article  Google Scholar 

  11. Sun N, Wood NB, Hughes AD, Thom SA, Xu XY. Fluid-wall modelling of mass transfer in an axisymmetric stenosis: effects of shear-dependent transport properties. Ann Biomed Eng. 2006;34:1119–28.

    Article  Google Scholar 

  12. Liu Y. A lattice Boltzman model for blood flows. Applied Mathmetical Modeling. 2012;36:2890–9.

    Article  MATH  Google Scholar 

  13. Narlaa VK, Tripathib D. Electroosmosis modulated transient blood flow in curved microvessels: Study of a mathematical model. Microvasc Res. 2019;123:25–34.

    Article  Google Scholar 

  14. Helthuis J, van Doormaal T, Amin-Hanjani S, Du X, Charbel F, Hillen B, van der Zwan A. A patient-specific cerebral blood flow model. J Biomech. 2020;98:109445.

    Article  Google Scholar 

  15. Debbich A, Abdallah A, Maatouk M, Hmida B, Sigovan M, Clarysse P, Bedoui M. A Spatiotemporal exploration and 3D modeling of blood flow in healthy carotid artery bifurcation from two modalities: Ultrasound-Doppler and phase contrast MRI. Comput Biol Med. 2020;118:103644.

    Article  Google Scholar 

  16. Bajd F, Sersa I. Mathematical Modeling of Blood Clot Fragmentation During Flow-Mediated Thrombolysis. Biophys J . 2013;104:1181–90.

    Article  Google Scholar 

  17. Ponalagusamy R, Priyadharshini S. Nonlinear model on pulsatile flow of blood through a porous bifurcated arterial stenosis in the presence of magnetic field and periodic body acceleration. Comput Methods Programs Biomed. 2017;142:31–41.

    Article  MATH  Google Scholar 

  18. Jayalalithaa G, Shanthoshini Devihab V, Uthayakumarb R. Fractal model for blood flow in cardiovascular system, Computers in Biology and Medicine. 2008;38:684–693.

  19. Montecinos G, Müller L, Toro E. Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes. J Comput Phys. 2014;266:101–23.

    Article  MathSciNet  MATH  Google Scholar 

  20. Müller L, Leugering G, Blanco P. Consistent treatment of viscoelastic effects at junctions in one-dimensional blood flow models. J Comput Phys. 2016;314:167–93.

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen J, Lu X. Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch. J Biomech. 2004;37:1899–911.

    Article  Google Scholar 

  22. Srinivasacharya D, Madhava Rao G. Mathematical model for blood flow through a bifurcated artery using couple stress fluid, Mathematical Biosciences. 2016;278:37–47.

  23. Gabriel S, Dinga Y, Feng Y. Modelling the period-average transport of species within pulsatile blood flow. J Theor Biol. 2018;457:258–69.

    Article  MathSciNet  MATH  Google Scholar 

  24. Scarsoglioa S, Galloa C, Saglietto A, Ridolfic L, Anselmino M. Impaired coronary blood flow at higher heart rates during atrial fibrillation: Investigation via multiscale modelling. Comput Methods Programs Biomed. 2019;175:95–102.

    Article  Google Scholar 

  25. Puelz C, Čanić S, Rivière B, Rusin C. Comparison of reduced models for blood flow using Runge–Kutta discontinuous Galerkin methods, Applied Numerical Mathematics. 2017;115:114–141.

  26. Johnsona D, Spaetha J, Rosec W, Naika U, Beris A. An impedance model for blood flow in the human arterial system. Part I: Model development and MATLAB implementation, Computers and Chemical Engineering. 2011;35:1304–16.

    Google Scholar 

  27. Abbasiana M, Shams M, Valizadeha Z, Moshfeghb A, Javadzadeganb A, Cheng S. Effects of different non-Newtonian models on unsteady blood flow hemodynamics in patient-specific arterial models with in-vivo validation. Comput Methods Programs Biomed. 2020;186:105185.

    Article  Google Scholar 

  28. Dobroserdova D, Liang F, Panasenko G, Vassilevski Y. Multiscale models of blood flow in the compliant aortic bifurcation. Applied Mathematics Letters. 2019;93:98–104.

    Article  MathSciNet  MATH  Google Scholar 

  29. Ghigo A, Lagrée P-Y, Fullana J-M. A time-dependent non-Newtonian extension of a 1D blood flow model. J Nonnewton Fluid Mech. 2018;253:36–49.

    Article  MathSciNet  Google Scholar 

  30. Nandakumar N, Sahu K, Anand M. Pulsatile flow of a shear-thinning model for blood through a two-dimensional stenosed channel. Euro J Mech B Fluids. 2015;49:29–35.

    Article  MathSciNet  MATH  Google Scholar 

  31. Molla M, Paul M. LES of non-Newtonian physiological blood flow in a model of arterial stenosis. Med Eng Phys. 2012;34:1079–87.

    Article  Google Scholar 

  32. Tan FP, Wood NB, Tabor G, Xu XY. Comparison of LES of steady transtional flow in an idealized stenosed axisymetric artery model with RANS transitional model. J Biomech Eng, 133.

  33. Chor T, Yang D, Meneveau C, Chamecki M. Preferential concentration of non-inertial buoyant particles in the ocean mixed layer under free convection. Phys Rev Fluids. 2018;3(06450):1–18.

    Google Scholar 

  34. Germano M, Piomelli U, Moin P, Cabot WH. A dynamic subgrid-scale eddy viscosity model. Phys Fluids A. 1991;3(7):1760–5.

    Article  MATH  Google Scholar 

  35. Paul M, Molla M. Investigation of physiological pulsatile flow in a model arterial stenosis using large-eddy and direct numerical simulations. Appl Math Model. 2012;36:4393–413.

    Article  MathSciNet  MATH  Google Scholar 

  36. Lantz J, Karlsson M. Large eddy simulation of LDL surface concentration in a subject specific human aorta. J Biomech. 2012;45:537–42.

    Article  Google Scholar 

  37. Chnafa C, Mendez S, Nicoud F. Image-based large-eddy simulation in a realistic left heart. Comput Fluids. 2014;94:173–87.

    Article  MathSciNet  MATH  Google Scholar 

  38. Paul M, Molla MdM, Roditi G. Large-Eddy simulation of pulsatile blood flow. Med Eng Phys. 2009;31:153–9.

    Article  Google Scholar 

  39. Cilla M, Casales M, Peña E, Martínez MA, Malvè M. A parametric model for studying the aorta hemodynamics by means of the computational fluid dynamics. J Biomech. 2020;103:109691.

    Article  Google Scholar 

  40. Gallo D, Gülan U, Di Stefano A, Ponzini R, Lüthi B, Holzner M, Morbiducci U. Analysis of thoracic aorta hemodynamics using 3D particle tracking velocimetry and computational fluid dynamics. J Biomech. 2014;47:3149–55.

    Article  Google Scholar 

  41. Benim A, Nahavandi A, Assmann A, Schubert D, Feindt P, Suh S. Simulation of blood flow in human aorta with emphasis on outlet boundary conditions. Appl Math Model. 2011;35:3175–88.

    Article  MathSciNet  MATH  Google Scholar 

  42. Andersson M, Ebbers T, Karlsson M. Characterization and estimation of turbulence-related wall shear stress in patient-specific pulsatile blood flow. J Biomech. 2019;85:108–17.

    Article  Google Scholar 

  43. Lantz J, Gårdhagen R, Karlsson M. Quantifying turbulent wall shear stress in a subject specific human aorta using large eddy simulation. Med Eng Phys. 2012;34:1139–48.

    Article  Google Scholar 

  44. Chi Q, He Y, Luan Y, Qin K, Mu L. Numerical analysis of wall shear stress in ascending aorta before tearing in type A aortic dissection. Comput Biol Med. 2017;89:236–47.

    Article  Google Scholar 

  45. Chuiko G, Dvornik O, Shyian S, Baganov Y. Blood hammer phenomenon in human aorta: Theory and modeling. Math Biosci. 2018;303:148–54.

    Article  MathSciNet  MATH  Google Scholar 

  46. Cygankiewicz I. Heart Rate Turbulence. Prog Cardiovasc Dis. 2013;56:160–71.

    Article  Google Scholar 

  47. Lee S, Smith D, Loth F, Fischer P, Bassiouny H. Importance of flow division on transition to turbulence within an arteriovenous graft. J Biomech. 2007;40:981–92.

    Article  Google Scholar 

  48. Bertolotti C, Deplano V. Three-dimensional numerical simulations of flow through a stenosed coronary bypass. J Biomech. 2000;33:1011–22.

    Article  Google Scholar 

  49. Rudman M, Blackburn HM. Direct numerical simulation of turbulent non-Newtonian flow using a spectral element method. Appl Math Model. 2006;30:1229–48.

    Article  MATH  Google Scholar 

  50. Khodaei S, Fatouraee N, Nabaei M. Numerical simulation of mitral valve prolapse considering the effect of left ventricle. Math Biosci. 2017;285:75–80.

    Article  MathSciNet  MATH  Google Scholar 

  51. Lee H, Lee T, Chang Y. Numerical simulation of flow-induced bi-directional oscillations. J Fluids Struct. 2013;37:220–31.

    Article  Google Scholar 

  52. Botkin N, Kovtanyuk A, Turova V, Sidorenko IN, Lampe R. Direct modeling of blood flow through the vascular network of the germinal matrix. Comput Biol Med. 2018;92:147–55.

    Article  Google Scholar 

  53. Rauschenberger P, Weigand B. Direct numerical simulation of rigid bodies in multiphase flow within an Eulerian framework. J Comput Phys. 2015;291:238–53.

    Article  MathSciNet  MATH  Google Scholar 

  54. Lee S, Lee S, Fischer P, Bassiouny HS, Loth F. Direct numerical simulation of transitional flow in a stenosed carotid bifurcation. J Biomech. 2008;41:2551–61.

    Article  Google Scholar 

  55. Ciri U, Bhui R, Bailon-Cuba J, Hayenga H, Leonardi S. Dependence of leukocyte capture on instantaneous pulsatile flow. J Biomech. 2018;76:84–93.

    Article  Google Scholar 

  56. Valen-Sendstad K, Mardal K, Mortensen Reif MB, Langtangen H. Direct numerical simulation of transitional flow in a patient-specific intracranial aneurysm. J Biomech 2011;44:2826–2832.

  57. Zheng EZ, Rudman M, Singh S, Kuang SB. Direct numerical simulation of turbulent non-Newtonian flow using OpenFOAM. Appl Math Model. 2019;72:50–67.

    Article  MathSciNet  MATH  Google Scholar 

  58. Assemat P, Armitage J, Siu K, Contreras K, Dart A, Chin-Dusting J, Hourigan K. Three-dimensional numerical simulation of blood flow in mouse aortic arch around atherosclerotic plaques. Appl Math Model. 2014;38:4175–85.

    Article  MathSciNet  Google Scholar 

  59. Fischer P, Loth F, Lee S, Lee S, Smith D, Bassiouny H. Simulation of high-Reynolds number vascular flows. Comput Methods Appl Mech Eng. 2007

  60. Rayz V, Berger S, Saloner D. Transitional flows in arterial fluid dynamics. Comput Methods Appl Mech Eng. 2007

  61. Lancellotti RM, Vergara C, Valdettaro L, Bose S, Quarteroni A. Large Eddy Simulations for blood fluid-dynamics in real stenotic carotids. Int. J. Numer. Meth. Biomed. Eng. 2017

  62. Vergara C, Le Van D, Quadrio M, Formaggia L, Domanin M. Large Eddy Simulations of blood dynamics in abdominal aortic aneurysms. Med Eng Phys. 2017

  63. Stella S, Vergara C, Giovannacci L, Quarteroni A, Prouse G. Assessing the disturbed flow and the transition to turbulence in the arteriovenous fistula. J Biomech Eng. 2019;141(10):101010.

    Article  Google Scholar 

  64. Witthoft A, Yazdani A, Peng Z, Bellini C, Humphrey JD, Karniadakis GE. A discrete mesoscopic particle model for the mechanics of a mli-constituent arterial wall. Interface. 2015;13:20150964.

    Google Scholar 

  65. Fedosov DA, Dao M, Karniadakis GE, Suresh S. Computational biorheology of human blood flow in health and disease. Ann Biomed Eng. 2014;42(2):368–87.

    Article  Google Scholar 

  66. Grinberg L, Fedosov D, Karniadakis GE. Parallel multiscale simulations of a brain aneurysm. J Comp Phys. 2013;244:131–47.

    Article  MathSciNet  MATH  Google Scholar 

  67. Lei H, Fedosov D, Caswell B, Karniadakis GE. Blood flow in small tubes: Quantifying the transition to the non-Newtonian regime. J Fluid Mechanics. 2013;722:214–39.

    Article  MATH  Google Scholar 

  68. Pan W, Fedosov D, Caswell B, Karniadakis GE. Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low dimensional models of red blood cells. Microvasular Journal. 2011;82:163–70.

    Google Scholar 

  69. Fedosov DA, Caswell B, Karniadakis GE. Wall shear stress-based model for adhesive dynamics of red blood cells in malaria. Biophys J. 2011;100:2084–93.

    Article  Google Scholar 

  70. Nicoud F, Toda HB, Cabrit O, Bose S, Lee J. using singular values to build a subgrid-scale model for large eddy simulations. Phys Fluids. 2011;23(8):085106.

    Article  Google Scholar 

  71. Quarteroni A, Veneziani A, Zunino P. Mathematical and Numerical Modeling of Solute Dynamics in Blood Flow and Arterial Walls, SIAM J. Numer. Anal., 39(5):1488–1511.

  72. Quarteroni A, Formaggia L. Handbook of Numerical Analysis, volume XII, chapter Mathematical modelling and numerical simulation of the cardiovascular system, Elsevier, Amsterdam, 2002

  73. Quarteroni A, Tuveri M, Veneziani A. Computational vascular fluid dynamics: problems, models and methods. Computing and Visualizations in Science. 2000;2:163–97.

    Article  MATH  Google Scholar 

  74. Quarteroni A, Manzoni A, Vergara C. The Cardiovascular System: Mathematical Modeling, Numerical Algorithms. Clinical Applications Acta Numerica. 2017;26:365–590.

    Article  MATH  Google Scholar 

  75. Quarteroni A, Veneziani A. Analysis of a geometrical multiscale model based on the coupling of ODE’s and PDE’s for blood flow simulation. SIAM j Multiscale Model Sim. 2003;1:173–95.

    Article  MathSciNet  MATH  Google Scholar 

  76. Reymonda P, Crosetto P, Deparis S, Quarteroni A, Stergiopulos N. Physiological simulation of blood flow in the aorta: Comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models. Med Eng Phys. 2013;35(6):784.

  77. Taylor CA, Hughes TJR, Zarins CK. Finite element modeling of blood flow in arteries. Comput Methods Appl Mech Eng. 1998;158(1–2):155–96.

    Article  MathSciNet  MATH  Google Scholar 

  78. Taylor CA, Fonte TA, Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol. 2013;61(22):2233–41.

    Article  Google Scholar 

  79. Vignon-Clementel IE, Alberto Figueroa C, Jansen KE, Taylor CA. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng. 2006;195(29):3776–3796.

  80. Tang BT, Pickard SS, Chan FP, Tsao PS, Taylor CA, Feinstein JA. Wall shear stress is decreased in the pulmonary arteries of patients with pulmonary arterial hypertension: an image-based, computational fluid dynamics study. Pulmonary circulation. 2012;2(4):470–6.

    Article  Google Scholar 

  81. Sankaran S, Kim HJ, Choi G, Taylor CA. Uncertainty quantification in coronary blood flow simulations: impact of geometry, boundary conditions and blood viscosity. J Biomech. 2016;49(12):2540–7.

    Article  Google Scholar 

  82. Sankaran S, Grady L, Taylor CA. Impact of geometric uncertainty on hemodynamic simulations using machine learning. Comput Methods Appl Mech Eng. 2015;297:167–90.

    Article  MathSciNet  MATH  Google Scholar 

  83. Elgobashi S. On predicting particle-laden turbulent flows. Appl Sci Res. 1994;52:309–29.

    Article  Google Scholar 

  84. Stangeby DK, Ethier CR. Computational analysis of coupled blood-wall arterial LDL transport. J Biomech Eng. 2002;124:1–8.

    Article  Google Scholar 

  85. Wada S, Karino T. Prediction of LDL concentration at the luminal surface of a vascular endothelium. Biorheology. 2002a;39:331–6.

    Google Scholar 

  86. Wada S, Karino T. Theoretical prediction of low-density lipoproteins concentration at the luminal surface of an artery with a multiple bend. Ann Biomed Eng. 2002b;30:778–91.

    Article  Google Scholar 

  87. Guretzki HJ, Gerbitz KD, Olgemoller B, Schleicher E. Atherogenic levels of low density lipoprotein alter the permeability and composition of the endothelial barrier. Atherosclerosis. 1994;107:15–24.

    Article  Google Scholar 

  88. Liu L, Litster J. The effect of particle shape on the spouting properties of non-spherical particles. Powder Technol. 1991;66(1):59–67.

    Article  Google Scholar 

  89. Liu X, Fan Y, Deng X. Effect of the endothelial glycocalyx layer on arterial LDL transport under normal and high pressure. J Theor Biol. 2011;283:71–81.

    Article  MATH  Google Scholar 

  90. Vincent PE, Sherwin SJ, Weinberg PD. The effect of spatially heterogenous transmural water flux on concentration polarization of low density lipoprotein in arteries. Biophys J . 2009;96:3102–55.

    Article  Google Scholar 

  91. Vincent PE, Sherwin SJ, Weinberg PD. The effect of the endothelial glycocalyx layer on concentration polarization of low density lipoprotein in arteries. J Theor Biol. 2010;265:1–17.

    Article  MATH  Google Scholar 

  92. Wada S, Karino T. Theoretical study of flow dependent concentration polarization of low density lipoproteins at the luminal surface of a straight artery. Biorheology. 1999;36:207–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Ilie.

Ethics declarations

Informed consent

There is no need for formal consent since no human participants were involved in this research.

Research involving human and animal participants

The research does not involve human participants and/or animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilie, M. A computational model for cardiovascular hemodynamics and protein transport phenomena. Health Technol. 11, 603–641 (2021). https://doi.org/10.1007/s12553-021-00530-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12553-021-00530-0

Keywords

Navigation