Skip to main content
Log in

Consistent parameter estimation and convergence properties analysis of hammerstein output-error models

  • Regular Papers
  • Control Theory
  • Published:
International Journal of Control, Automation and Systems Aims and scope Submit manuscript

Abstract

This paper presents an on-line bias-compensating recursive least squares (BCRLS) identification algorithm for Hammerstein output-error models disturbed by non-martingale difference sequence noise. By introducing an auxiliary vector uncorrelated with the noise, the consistent parameter estimation is obtained without the strictly positive real (SPR) condition. Convergence analysis of the recursive algorithm is performed using the ordinary differential equation (ODE) method. The simulation results validate the algorithm proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ljung, System Identification: Theory for the User, 2nd edition, Prentice Hall, New Jersey, 1999.

    Google Scholar 

  2. L. Ljung, “On positive real transfer functions and the convergence of some recursive schemes,” IEEE Trans. on Automatic Control, vol. 22, no. 4, pp. 539–551, August 1977.

    Article  MATH  MathSciNet  Google Scholar 

  3. L. Ljung, “Analysis of recursive stochastic algorithms,” IEEE Trans. on Automatic Control, vol. 22, no. 4, pp. 551–575, August 1977.

    Article  MATH  MathSciNet  Google Scholar 

  4. L. Ljung and T. Söderström, Theory and Practice of Recursive Identification, MIT Press, Cambridge, MA, 1983.

    MATH  Google Scholar 

  5. G. C. Goodwin and K. S. Sin, Adaptive Filtering, Prediction and Control, Prentice-Hall, Englewood Cliffs, New Jersey, 1984.

    MATH  Google Scholar 

  6. H. F. Chen and Y. M. Zhu, Stochastic Approximation, Shanghai Scientific & Technical Publishers, 1996.

    Google Scholar 

  7. E. W. Bai, “An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems,” Automatica, vol. 34, no. 3, pp. 333–338, March 1998.

    Article  MATH  MathSciNet  Google Scholar 

  8. Y. Xiao, G. Song, Y. Liao, and R. Ding, “Multiinnovation stochastic gradient parameter estimation for input nonlinear controlled autoregressive models,” International Journal of Control, Automation, and Systems, vol. 10, no. 3, pp. 639–643, June 2012.

    Article  Google Scholar 

  9. D. L. Zhang, Y. G. Tang, J. H. Ma, and X. P. Guan, “Identification of Wiener model with discontinuous nonlinearities using differential evolution,” International Journal of Control, Automation, and Systems, vol. 11, no. 3, pp. 511–518, June 2013.

    Article  Google Scholar 

  10. K. S. Narendra and P. G. Gallman, “An iterative method for the identification of nonlinear systems using a Hammerstein model,” IEEE Trans. on Automatic Control, vol. 11, no. 3, pp. 546–550, July 1966.

    Article  Google Scholar 

  11. F. Chang and R. Luus, “A noniterative method for identification using Hammerstein model,” IEEE Trans. on Automatic Control, vol. 16, no. 5, pp. 464–468, October 1971.

    Article  Google Scholar 

  12. M. Boutateb and M. Darouach, “Recursive identification method for MISO Wiener-Hammerstein model,” IEEE Trans. on Automatic Control, vol. 40, no. 2, pp. 287–291, February 1995.

    Article  Google Scholar 

  13. J. Voros, “Parameter identification of discontinuous Hammerstein systems,” Automatica, vol. 33, no. 6, pp. 1141–1146, June 1997.

    Article  MathSciNet  Google Scholar 

  14. F. Ding, Y. Shi, and T. W. Chen, “Auxiliary model- based least-squares identification methods for Hammerstein output-error systems,” Systems & Control Letters, vol. 56, no. 5, pp. 373–380, May 2007.

    Article  MATH  MathSciNet  Google Scholar 

  15. F. Ding, Y. Shi, and T. W. Chen, “Gradient-based identification methods for Hammerstein nonlinear ARMAX models,” Nonlinear Dynamics, vol. 45, no. 1–2, pp. 31–43, July 2006.

    Article  MATH  MathSciNet  Google Scholar 

  16. F. Ding and T. W. Chen, “Identification of Hammerstein nonlinear ARMAX systems,” Automatica, vol. 41, no. 9, pp. 1479–1489, September 2005.

    Article  MATH  MathSciNet  Google Scholar 

  17. W. X. Zhao, “Parametric identification of Hammerstein systems with consistency results using stochastic inputs,” IEEE Trans. on Automatic Control, vol. 55, no. 2, pp. 474–480, February 2010.

    Article  Google Scholar 

  18. M. Sznaier, “Computational complexity analysis of set membership identification of Hammerstein and Wiener systems,” Automatica, vol. 45, no. 3, pp. 701–705, March 2009.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Garulli, L. Giarrè, and G. Zappa, “Identification of approximated Hammerstein models in a worstcase setting,” IEEE Trans. on Automatic Control, vol. 47, no. 12, pp. 2046–2050, December 2002.

    Article  Google Scholar 

  20. P. Falugi, L. Giarrè, and G. Zappa, “Approximation of the feasible parameter set in worst-case identification of Hammerstein models,” Automatica, vol. 41, no. 6, pp. 1017–1024, June 2005.

    Article  MATH  MathSciNet  Google Scholar 

  21. V. Cerone and D. Regruto, “Parameter bounds for discrete-time Hammerstein models with bounded output errors,” IEEE Trans. on Automatic Control, vol. 48, no. 10, pp. 1855–1860, October 2003.

    Article  MathSciNet  Google Scholar 

  22. V. Cerone, D. Piga, and D. Regruto, “Bounded error identification of Hammerstein systems through sparse polynomial optimization,” Automatica, vol. 48, no. 10, pp. 2693–2698, October 2012.

    Article  MATH  MathSciNet  Google Scholar 

  23. Y. Zhang, T. T. Lie, and C. B. Soh, “Consistent parameter estimation of systems disturbed by correlated noise,” IEE Proc.-Control Theory Appl., vol. 144, no. 1, pp. 40–44, January 1997.

    Article  MATH  Google Scholar 

  24. F. Ding, T. Chen, and L. Qiu, “Bias compensation based recursive least-squares identification algorithm for MISO systems,” IEEE Trans. on Circuits and Systems — II: Express Briefs, vol. 53, no. 5, pp. 349–353, May 2006.

    Article  Google Scholar 

  25. L. J. Jia, R. Tao, S. Kanae, Z. J. Yang, and K. Wada, “A unified framework for bias compensation based methods in correlated noise case,” IEEE Trans. on Automatic Control, vol. 56, no. 3, pp. 625–629, March 2011.

    Article  MathSciNet  Google Scholar 

  26. T. Söderström, “Comparing some classes of biascompensating least squares methods,” Automatica, vol. 49, no. 2, pp. 840–845, February 2013.

    Article  MATH  Google Scholar 

  27. J. L. Figueroa, J. E. Cousseau, S. Werner, and T. Laakso, “Adaptive control of a Wiener type system: application of a Ph Neutralization reactor,” International Journal of Control, vol. 80, no. 2, pp. 231–249, February 2007.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Zhong Mao.

Additional information

Bi Zhang was born in Shenyang, Liaoning Province, China. He is currently studying for a Ph.D. degree at the Northeastern University, Shenyang, China. His main research interests are nonlinear system modeling and control.

Zhi-Zhong Mao received his B.S. degree from Harbin Electrician College, Harbin, China, and his M.S. and Ph.D. degrees from Northeastern University, Shenyang, China, in 1982, 1984, and 1991, respecttively. He is a Professor and a Ph.D. Supervisor at Northeastern University, China. His main research interests are modeling, control and optimization in complex industrial systems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Mao, ZZ. Consistent parameter estimation and convergence properties analysis of hammerstein output-error models. Int. J. Control Autom. Syst. 13, 302–310 (2015). https://doi.org/10.1007/s12555-013-0336-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12555-013-0336-x

Keywords

Navigation