Skip to main content
Log in

A Twin Multi-Class Classification Support Vector Machine

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Twin support vector machine (TSVM) is a novel machine learning algorithm, which aims at finding two nonparallel planes for each class. In order to do so, one needs to resolve a pair of smaller-sized quadratic programming problems rather than a single large one. Classical TSVM is proposed for the binary classification problem. However, multi-class classification problem is often met in our real world. For this problem, a new multi-class classification algorithm, called Twin-KSVC, is proposed in this paper. It takes the advantages of both TSVM and K-SVCR (support vector classification-regression machine for k-class classification) and evaluates all the training points into a “1-versus-1-versus-rest” structure, so it generates ternary outputs { −1, 0, +1}. As all the samples are utilized in constructing the classification hyper-plane, our proposed algorithm yields higher classification accuracy in comparison with other two algorithms. Experimental results on eleven benchmark datasets demonstrate the feasibility and validity of our proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://archive.ics. uci. edu/ml/datasets.html.

References

  1. Vapnik V. The nature of statistical learning theory. New York: Springer; 1995.

    Book  Google Scholar 

  2. Ripley BD. Pattern recognition and neural networks. Cambridge, Cambridge University Press; 1996.

    Google Scholar 

  3. Jayadeva K, Khemchandani R, Chandra S. Twin support vector machines for pattern classification. IEEE Trans Pattern Anal Mach Intell. 2007;29(5):905–10.

    Google Scholar 

  4. Khemchandani R, Jayadeva, Chandra S. Optimal kernel selection in twin support vector machines. Optim Lett. 2009;3(1):77–88.

  5. Ghorai S, Mukherjee A, Dutta PK. (2009) Nonparallel plane proximal classifier. Signal Process. 89(4):510–22.

    Article  Google Scholar 

  6. Fung G, mangasarian OL. Multicategory proximal support vector machine classifiers. Mach Learn. 2005;59:77–97.

    Article  Google Scholar 

  7. Peng XJ. A new twin support vector machine clssifier and its geometric algorithms. Inf Sci. 2010;180(20):3863–75.

    Article  Google Scholar 

  8. Xu Y, Wang L, Zhong P. A rough margin-based ν-twin support vector machine. Neural Comput Appl. 2012;21(6):1307–17.

    Google Scholar 

  9. Kumar MA, Gopal M. Least squares twin support vector machines for pattern classification. Expert Syst Appl. 2009;36(4):7535–43.

    Article  Google Scholar 

  10. Peng XJ. TSVR: an efficient twin support vector machine for regression. Neural Netw. 2010;23(3):365–72.

    Article  PubMed  Google Scholar 

  11. Xu Y, Wang L. A weighted twin support vector regression. Knowl-Based Syst. 2012;33:92–101.

    Google Scholar 

  12. Lin C, Wang S. Fuzzy support vector machines. IEEE Trans. Neural Netw. 2002;13(2):464–71.

    Article  PubMed  Google Scholar 

  13. Jayadeva K, Khemchandani R, Chandra S. Fuzzy multi-category proximal support vector classification via generalized eigenvalues. Soft Comput. 2007;11(7):679–685.

    Google Scholar 

  14. Khemchandani R, Jayadeva, Chandra S. Fuzzy twin support vector machines for pattern classification. Mathematical programming and game theory for decision making. Singapore: World Scientific; 2008. p. 131–42.

  15. Arun Kumar M, Gopal M. Application of smoothing technique on twin support vector machines. Pattern Recognit Lett. 2008; 29(13):1842–48.

    Article  Google Scholar 

  16. Chen X, Yang J, Liang J, Ye Q. Smooth twin support vector regression. Neural Comput Appl. 2012;21(3):505–13.

    Google Scholar 

  17. Ghorai S, Hossain SJ, Dutta PK, Mukherjee A. Newtons method for nonparallel plane proximal classifier with unity norm hyperplanes. Signal Process. 2010; 90(1):93–104.

    Article  Google Scholar 

  18. Hastie TJ, Tibshirani RJ. Classification by pairwise coupling. In: Jordan MI, Kearns MJ, Solla SA, editors. Advances in neural information processing systems 10. Cambridge MA: MIT Press; 1998. p. 507–13.

    Google Scholar 

  19. Krebel U. Pairwise classification and support vector machines. In: Scholkopf B, Burges CJC, Smola AJ, editors. Advances in Kernel methods: support vector learning. Cambridge, MA: MIT Press; 1999. p. 255–68.

    Google Scholar 

  20. Hsu C, Lin C. A comparision of methods for multiclass support vector machine. IEEE Trans. Neural Netw. 2002;13:415–25.

    Article  PubMed  Google Scholar 

  21. Subirats JL, Jerez JM, Gomez I, Franco L. Multiclass pattern recognition extension for the new C-Mantec constructive neural network algorithm. Cogn Comput. 2010;2(4):285–90.

    Article  Google Scholar 

  22. Thomas GD, Ghulum B. Solving multiclass learning problems via error-correcting output codes. J Artif Intell Res. 1995;2:263–86.

    Google Scholar 

  23. Nagase A, Kawanaka H, Shoaib Bhuiyan Md, Oguri K. Multi-class identification of drivers cognitive distraction with error-correcting output coding (ECOC) method. In: Proceedings of the 12th international IEEE conference on intelligent transportation systems; 2009. p. 96–101.

  24. Zhou ZH, Liu XY. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans Knowl Data Eng. 2006;18:63–77.

    Article  Google Scholar 

  25. Angulo C, Parra X, Catal A. K-SVCR: a support vector machine for multi-class classification. Neurocomputing. 2003;55:57–77.

    Article  Google Scholar 

  26. Cong H, Yang C, Pu X. Efficient speaker recognition based on multi-class twin support vector machines and GMMs, robotics, automation and mechatronics, 2008 IEEE conference on 21–24 Sept. 2008. p. 348–52.

  27. Zhong P, Fukshima M. A new multi-class support vector algorithm. Optim Methods Softw. 2006;3:359–72.

    Article  Google Scholar 

  28. Platt J. Fast training of support vector machine using sequential minimal optimization. In:Advances in kernel methods-support vector learning . Cambridge: MIT Press; 1999. p. 185–208.

  29. Yang K, Zhao L. A new optimizing parameter approach of LSSVM multiclass classification model. Neural Comput Appl. 2012;21(5):945–55.

    Google Scholar 

  30. He H, Edwardo AG. Learning from imbalanced data. IEEE Trans Knowl Data Eng. 2009;21(9):1263–84.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank all anonymous referees for helpful comments that have leaded to improvement of the paper. This work was supported by National Natural Science Foundation of China (Grant No. 61153003, 11171346).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yitian Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Guo, R. & Wang, L. A Twin Multi-Class Classification Support Vector Machine. Cogn Comput 5, 580–588 (2013). https://doi.org/10.1007/s12559-012-9179-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-012-9179-7

Keywords

Navigation