Skip to main content

Advertisement

Log in

Evolutionary Multitasking: A Computer Science View of Cognitive Multitasking

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

The human mind possesses the most remarkable ability to perform multiple tasks with apparent simultaneity. In fact, with the present-day explosion in the variety and volume of incoming information streams that must be absorbed and appropriately processed, the opportunity, tendency, and (even) the need to multitask are unprecedented. Thus, it comes as little surprise that the pursuit of intelligent systems and algorithms that are capable of efficient multitasking is rapidly gaining importance among contemporary scientists who are faced with the increasing complexity of real-world problems. To this end, the present paper is dedicated to a detailed exposition on a so-far underexplored characteristic of population-based search algorithms, i.e., their inherent ability (much like the human mind) to handle multiple optimization tasks at once. We present a simple evolutionary methodology capable of cross-domain multitask optimization in a unified genotype space and show that there exist many potential benefits of its application in practical domains. Most notably, it is revealed that multitasking enables one to automatically leverage upon the underlying commonalities between distinct optimization tasks, thereby providing the scope for considerably improved performance in real-world problem solving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Dzubak CM. Multitasking: the good, the bad, and the unknown. J Assoc Tutor Prof. 2008;1(2):1–12.

    Google Scholar 

  2. Adler RF, Benbunan-Fich R. Juggling on a high wire: multitasking effects on performance. Int J Hum Comput Stud. 2012;70(2):156–68.

    Article  Google Scholar 

  3. Salvucci DD, Taatgen NA. Threaded cognition: an integrated theory of concurrent multitasking. Psychol Rev. 2008;115(1):101.

    Article  PubMed  Google Scholar 

  4. Just MA, Buchweitz A. What brain imaging reveals about the nature of multitasking. In: Chipman S, editor. The Oxford handbook of cognitive science. New York: Oxford University Press; 2011. Available from www.ccbi.cmu.edu/reprints/Just-Buchweitz_Chipman_handbook%20chapt_multitasking.pdf.

  5. Caruana R. Multitask learning. Mach Learn. 1997;28(1):41–75.

    Article  Google Scholar 

  6. Bäck T, Hammel U, Schwefel HP. Evolutionary computation: comments on the history and current state. IEEE Trans Evol Comput. 1997;1(1):3–17.

    Article  Google Scholar 

  7. Golberg DE. Genetic algorithms in search, optimization, and machine learning. Boston: Addion wesley; 1989.

    Google Scholar 

  8. Srinivas M, Patnaik LM. Genetic algorithms: a survey. Computer. 1994;27(6):17–26.

    Article  Google Scholar 

  9. Grefenstette JJ, Baker JE. How genetic algorithms work: a critical look at implicit parallelism. In Proceedings of the third international conference on Genetic algorithms 1989 Dec 1. Morgan Kaufmann Publishers Inc. pp. 20–27.

  10. Bertoni A, Dorigo M. Implicit parallelism in genetic algorithms. Artif Intell. 1993;61(2):307–14.

    Article  Google Scholar 

  11. Wright AH, Vose MD, Rowe JE. Implicit parallelism. In: Genetic and evolutionary computation—GECCO. Berlin, Heidelberg: Springer; 2003. pp. 1505–1517.

  12. Seada H, Deb K. A unified evolutionary optimization procedure for single, multiple, and many objectives. doi:10.1109/TEVC.2015.2459718.

  13. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput. 2002;6(2):182–97.

    Article  Google Scholar 

  14. Deb K. Multi-objective optimization using evolutionary algorithms. London: Wiley; 2001.

    Google Scholar 

  15. Ishibuchi H, Tsukamoto N, Nojima Y. Evolutionary many-objective optimization: a short review. In: IEEE congress on evolutionary computation; 2008 Jun 1. pp. 2419–2426.

  16. Asafuddoula M, Ray T, Sarker R. A decomposition based evolutionary algorithm for many objective optimization. IEEE Trans Evol Comput. 2014;19(3):445–60.

    Article  Google Scholar 

  17. Gupta A, Ong YS, Feng L. Multifactorial evolution: toward evolutionary multitasking. Accepted IEEE Trans Evol Comput. doi:10.1109/TEVC.2015.2458037.

  18. Rice JO, Cloninger CR, Reich TH. Multifactorial inheritance with cultural transmission and assortative mating. I. Description and basic properties of the unitary models. Am J Hum Genet. 1978;30(6):618.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cloninger CR, Rice J, Reich T. Multifactorial inheritance with cultural transmission and assortative mating. II. A general model of combined polygenic and cultural inheritance. Am J Hum Genet. 1979;31(2):176.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen X, Ong YS, Lim MH, Tan KC. A multi-facet survey on memetic computation. IEEE Trans Evol Comput. 2011;15(5):591–607.

    Article  Google Scholar 

  21. Ong YS, Lim MH, Chen X. Research frontier-memetic computation—past, present & future. IEEE Comput Intell Mag. 2010;5(2):24.

    Article  Google Scholar 

  22. Dawkins R. The selfish gene. Oxford: Oxford University Press; 2006.

    Google Scholar 

  23. Cavalli-Sforza LL, Feldman MW. Cultural versus biological inheritance: phenotypic transmission from parents to children. (A theory of the effect of parental phenotypes on children’s phenotypes). Am J Hum Genet. 1973;25(6):618.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Feldman MW, Laland KN. Gene-culture coevolutionary theory. Trends Ecol Evol. 1996;11(11):453–7.

    Article  CAS  PubMed  Google Scholar 

  25. Krawiec K, Wieloch B. Automatic generation and exploitation of related problems in genetic programming. In: IEEE congress on evolutionary computation (CEC); 2010 Jul 18, pp. 1–8.

  26. Bean JC. Genetic algorithms and random keys for sequencing and optimization. ORSA J Comput. 1994;6(2):154–60.

    Article  Google Scholar 

  27. Gonçalves JF, Resende MG. Biased random-key genetic algorithms for combinatorial optimization. J Heuristics. 2011;17(5):487–525.

    Article  Google Scholar 

  28. Chauhan P, Deep K, Pant M. Novel inertia weight strategies for particle swarm optimization. Memetic Comput. 2013;5(3):229–51.

    Article  Google Scholar 

  29. Ong YS, Zhou Z, Lim D. Curse and blessing of uncertainty in evolutionary algorithm using approximation. In: Congress on evolutionary computation; 2006, pp. 2928–2935.

  30. Ong YS, Keane AJ. Meta-Lamarckian learning in memetic algorithms. IEEE Trans Evol Comput. 2004;8(2):99–110.

    Article  Google Scholar 

  31. Deb K, Agrawal RB. Simulated binary crossover for continuous search space. Complex Syst. 1994;9(3):1–15.

    Google Scholar 

  32. Watson RA, Jansen T. A building-block royal road where crossover is provably essential. In: Proceedings of the 9th annual conference on Genetic and evolutionary computation, ACM; 2007 Jul 7, pp. 1452–1459.

  33. Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng. 2010;22(10):1345–59.

    Article  Google Scholar 

  34. Feng L, Ong YS, Lim M, Tsang I. Memetic search with inter-domain learning: a realization between CVRP and CARP. IEEE Trans Evol Comput. 2014;19(5):644–58.

    Article  Google Scholar 

  35. Feng L, Ong YS, Tan AH, Tsang IW. Memes as building blocks: a case study on evolutionary optimization + transfer learning for routing problems. Memetic Comput. 2015;7(3):159–80.

    Article  Google Scholar 

  36. Besada-Portas E, de la Torre L, de la Cruz JM, de Andrés-Toro B. Evolutionary trajectory planner for multiple UAVs in realistic scenarios. IEEE Trans Robot. 2010;26(4):619–34.

    Article  Google Scholar 

  37. Deb K, Sindhya K, Okabe T. Self-adaptive simulated binary crossover for real-parameter optimization. In: Proceedings of the Genetic and evolutionary computation conference (GECCO-2007), UCL London; 2007, pp. 1187–1194.

  38. Poli R, Langdon WB. Schema theory for genetic programming with one-point crossover and point mutation. Evol Comput. 1998;6(3):231–52.

    Article  CAS  PubMed  Google Scholar 

  39. Ong YS, Nair PB, Keane AJ. Evolutionary optimization of computationally expensive problems via surrogate modeling. AIAA J. 2003;41(4):687–96.

    Article  Google Scholar 

  40. Dantzig GB, Ramser JH. The truck dispatching problem. Manage Sci. 1959;6(1):80–91.

    Article  Google Scholar 

  41. Solomon MM. Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper Res. 1987;35(2):254–65.

    Article  Google Scholar 

  42. Avigad G, Moshaiov A. Set-based concept selection in multi-objective problems: optimality versus variability approach. J Eng Des. 2009;20(3):217–42.

    Article  Google Scholar 

  43. Avigad G, Moshaiov A, Brauner N. MOEA-based approach to delayed decisions for robust conceptual design. In: Applications of evolutionary computing. Berlin, Heidelberg: Springer; 2005 Jan 1, pp. 584–589.

  44. Avigad G, Moshaiov A. Interactive evolutionary multiobjective search and optimization of set-based concepts. IEEE Trans Syst Man Cybernet B Cybernet. 2009;39(4):1013–27.

    Article  Google Scholar 

  45. Gupta A. Numerical modelling and optimization of non-isothermal, rigid tool liquid composite moulding processes (Doctoral dissertation, ResearchSpace@ Auckland). 2013.

  46. Gupta A, Kelly PA, Bickerton S, Walbran WA. Simulating the effect of temperature elevation on clamping force requirements during rigid-tool Liquid Composite Moulding processes. Compos A Appl Sci Manuf. 2012;43(12):2221–9.

    Article  CAS  Google Scholar 

  47. Gupta A, Kelly PA, Ehrgott M, Bickerton S. A surrogate model based evolutionary game-theoretic approach for optimizing non-isothermal compression RTM processes. Compos Sci Technol. 2013;29(84):92–100.

    Article  Google Scholar 

  48. Advani SG, Hsiao KT, editors. Manufacturing techniques for polymer matrix composites (PMCs). Amsterdam: Elsevier; 2012.

    Google Scholar 

  49. Walbran WA. Experimental validation of local and global force simulations for rigid tool liquid composite moulding processes (Doctoral dissertation, ResearchSpace@ Auckland). 2011.

  50. Jiang S, Ong YS, Zhang J, Feng L. Consistencies and contradictions of performance metrics in multiobjective optimization. IEEE Trans Cybernet. 2014;44(12):2391–404.

    Article  Google Scholar 

  51. Hsu S, Ehrgott M, Kelly P. Optimisation of mould filling parameters of the compression resin transfer moulding process. In: 45th annual conference of the operations research society of New Zealand (ORSNZ). 2010 Nov.

Download references

Acknowledgments

The authors would like to thank Dr. Yuan Yuan, Research Fellow in the School of Computer Engineering, NTU, Singapore, for his assistance in producing some of the figures presented in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yew-Soon Ong.

Ethics declarations

Conflict of interest

Yew-Soon Ong, Abhishek Gupta declare that they have no conflict of interest

Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Declaration of Helsinki 1975, as revised in 2008 (5). Additional informed consent was obtained from all patients for which identifying information is included in this article.

Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ong, YS., Gupta, A. Evolutionary Multitasking: A Computer Science View of Cognitive Multitasking. Cogn Comput 8, 125–142 (2016). https://doi.org/10.1007/s12559-016-9395-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-016-9395-7

Keywords

Navigation