Skip to main content
Log in

Comprehensive Taxonomies of Nature- and Bio-inspired Optimization: Inspiration Versus Algorithmic Behavior, Critical Analysis Recommendations

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

In recent algorithmic family simulates different biological processes observed in Nature in order to efficiently address complex optimization problems. In the last years the number of bio-inspired optimization approaches in literature has grown considerably, reaching unprecedented levels that dark the future prospects of this field of research. This paper addresses this problem by proposing two comprehensive, principle-based taxonomies that allow researchers to organize existing and future algorithmic developments into well-defined categories, considering two different criteria: the source of inspiration and the behavior of each algorithm. Using these taxonomies we review more than three hundred publications dealing with nature-inspired and bio-inspired algorithms, and proposals falling within each of these categories are examined, leading to a critical summary of design trends and similarities between them, and the identification of the most similar classical algorithm for each reviewed paper. From our analysis we conclude that a poor relationship is often found between the natural inspiration of an algorithm and its behavior. Furthermore, similarities in terms of behavior between different algorithms are greater than what is claimed in their public disclosure: specifically, we show that more than one-third of the reviewed bio-inspired solvers are versions of classical algorithms. Grounded on the conclusions of our critical analysis, we give several recommendations and points of improvement for better methodological practices in this active and growing research field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://ecf.zemris.fer.hr/

  2. http://moeaframework.org/

  3. http://esa.github.io/pygmo/index.html

References

  1. Yang XS, Xiao R, Karamanoglu M, Cui Z, Gandomi A H, (eds). 2013. Swarm intelligence and bio-inspired computation: theory and applications. Amsterdam: Elsevier.

  2. Eberhart R, Kennedy J. A new optimizer using particle swarm theory. MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science; 1995 . p. 39–43.

  3. Yang XS. . A new metaheuristic Bat-inspired algorithm. Springer; 2010. p. 65–74.

  4. Yang XS. Firefly algorithms for multimodal optimization. Stochastic algorithms: foundations and applications; 2009 . p. 169–178.

  5. Saremi S, Mirjalili S, Lewis A. Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 2017;105:30–47.

    Google Scholar 

  6. Dorigo M, Maniezzo V, Colorni A. The ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics Part B (Cybernetics) 1996;26(1):29–41.

    Google Scholar 

  7. Dorigo M, Stützle T. Ant colony optimization. Cambridge: MIT Press; 2004.

    MATH  Google Scholar 

  8. Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 2007;39(3):459–471.

    MathSciNet  MATH  Google Scholar 

  9. Mirjalili S. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 2016;27(4):1053–1073.

    MathSciNet  Google Scholar 

  10. Theraulaz G, Goss S, Gervet J, Deneubourg JL. 1991. Task differentiation in Polistes wasp colonies: a model for self-organizing groups of robots. Proceedings of the First International Conference on Simulation of Adaptive Behavior : From Animals to Animates, pp. 346–355.

  11. Mirjalili S, Lewis A. The Whale Optimization Algorithm. Adv Eng Softw 2016;95:51–67.

    Google Scholar 

  12. Salcedo-Sanz S, Del Ser J, Landa-Torres I, Gil-López S, Portilla-Figueras J. The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems. The Scientific World Journal 2014;2014:15. Article ID 739768.

    Google Scholar 

  13. Gandomi HA, Alavi HA. Krill herd: a new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation 2012;17(12):4831–4845.

    MathSciNet  MATH  Google Scholar 

  14. Lui Y, Passino KM. Biomimicry of social foraging bacteria for distributed optimization: models, principles, and emergent behaviors. J Optim Theory Appl 2002;115(3):603–628.

    MathSciNet  MATH  Google Scholar 

  15. Jiang Q, Wang L, Hei X, Fei R, Yang D, Zou F, et al. Optimal approximation of stable linear systems with a novel and efficient optimization algorithm. Proceedings of the IEEE Congress on Evolutionary Computation, CEC; 2014. p. 840–844.

  16. Abedinpourshotorban H, Shamsuddin SM, Beheshti Z, Jawawi DNA. Electromagnetic field optimization: a physics-inspired metaheuristic optimization algorithm. Swarm and Evolutionary Computation 2016; 26:8–22.

    Google Scholar 

  17. Ilker Birbil S, Fang SC. An electromagnetism-like mechanism for global optimization. J Global Optim 2003;25(3):263–282.

    MathSciNet  MATH  Google Scholar 

  18. Rashedi E, Nezamabadi-Pour H, Saryazdi SGSA. A gravitational search algorithm. Inf Sci 2009;179(13):2232–2248.

    MATH  Google Scholar 

  19. Shah-Hosseini H. Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic forcontinuous optimisation. Int J Comput Sci Eng 2011;6(1):132–140.

    Google Scholar 

  20. Zhou Y, Luo Q, Liu J. Glowworm swarm optimization for optimization dispatching system of public transit vehicles. J Theor Appl Inf Technol 2013;52:205–210.

    Google Scholar 

  21. Lee KS, Geem ZW. A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 2005;194:3902–3933.

    MATH  Google Scholar 

  22. Abdechiri M, Meybodi MR, Bahrami H. Gases Brownian Motion Optimization: an algorithm for optimization (GBMO). Applied Soft Computing 2013;13:2932–2946.

    Google Scholar 

  23. Kirkpatrick S, Gelatt CD, VM P. Optimization by simulated annealing. Science. 1989; 220(4598):671–680.

    MathSciNet  MATH  Google Scholar 

  24. Moosavian N, algorithm Roodsari BK. Soccer league competition: a novel meta-heuristic algorithm for optimal design of water distribution networks. Swarm and Evolutionary Computation 2014;17:14–24.

    Google Scholar 

  25. Kashan AH. League Championship Algorithm (LCA): an algorithm for global optimization inspired by sport championships. Applied Soft Computing 2014;16:171–200.

    Google Scholar 

  26. Shi Y. Brain storm optimization algorithm. Advances in swarm intelligence; 2011. p. 303–309.

  27. Shayeghi H, Dadashpour J. Anarchic society optimization based PID control of an automatic voltage regulator (AVR) system. Electrical and Electronic Engineering 2012;2(4):199–207.

    Google Scholar 

  28. Atashpaz-Gargari E, Lucas C. Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. 2007 IEEE congress on evolutionary computation; 2007. p. 4661–4667.

  29. Pintea CM. . Bio-inspired computing. Berlin: Springer; 2014. p. 3–19.

  30. Mahdavi S, Shiri ME, Rahnamayan S. Metaheuristics in large-scale global continues optimization: a survey. Information Sciences 2015;295:407–428.

    MathSciNet  Google Scholar 

  31. Sörensen K. Metaheuristics–the metaphor exposed. Int Trans Operational Res 2015;22(1):3–18.

    MathSciNet  MATH  Google Scholar 

  32. Del Ser J, Osaba E, Molina D, Yang XS, Salcedo-Sanz S, Camacho D, et al. Bio-inspired computation: where we stand and what’s next. Swarm and Evolutionary Computation 2019;48:220–250.

    Google Scholar 

  33. Fister Jr I, Mlakar U, Brest J, Fister I. A new population-based nature-inspired algorithm every month: is the current era coming to the end. Proceedings of the 3rd student computer science research conference. University of Primorska Press; 2016 . p. 33–37.

  34. Weyland D. A critical analysis of the harmony search algorithm – how not to solve sudoku. Oper Re Perspect 2015;2:97–105.

    MathSciNet  Google Scholar 

  35. Saka MP, Hasançebi O, Geem ZW. Metaheuristics in structural optimization and discussions on harmony search algorithm. Swarm and Evolutionary Computation 2016;28:88–97.

    Google Scholar 

  36. Kar AK. Bio inspired computing – A review of algorithms and scope of applications. Expert Systems with Applications 2016;59:20–32.

    Google Scholar 

  37. Xiong N, Molina D, Ortiz ML, Herrera F. A walk into metaheuristics for engineering optimization: principles, methods and recent trends. International Journal of Computational Intelligence Systems, 2015 2015;8(4):606–636.

    Google Scholar 

  38. Molina D, LaTorre A, Herrera F. An insight into bio-inspired and evolutionary algorithms for global optimization: review, analysis, and lessons learnt over a decade of competitions. Cognitive Computation 2018;10(4):517–544.

    Google Scholar 

  39. Zavala GR, Nebro AJ, Luna F, Coello Coello CA. A survey of multi-objective metaheuristics applied to structural optimization. Struct Multidiscip Optim 2014;49(4):537–558.

    MathSciNet  Google Scholar 

  40. Yang XS, Chien S, Ting TO. Chapter 1 - Bio-inspired computation and optimization: an overview. Bio-inspired computation in telecommunications. In: Yang XS, Chien SF, and Ting TO, editors. Morgan Kaufmann; 2015. p. 1–21.

  41. Beni G, Wang J. Swarm intelligence in cellular robotic systems. Robots and biological systems: towards a new bionics? In: Dario P, Sandini G, and Aebischer P, editors; 1993. p. 703-712.

  42. Fong S. 18 - Opportunities and challenges of integrating bio-inspired optimization and data mining algorithms. Swarm intelligence and bio-inspired computation. In: Yang XS, Cui Z, Xiao R, Gandomi AH, and Karamanoglu M, editors. Elsevier; 2013 . p. 385–402.

  43. Del Ser J, Osaba E, Sanchez-Medina JJ, Fister I. 2019. Bioinspired computational intelligence and transportation systems: a long road ahead. IEEE Transactions on Intelligent Transportation Systems, in press.

  44. del Valle Y, Venayagamoorthy GK, Mohagheghi S, Hernandez J, Harley RG. Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Transactions on Evolutionary Computation 2008;12(2):171–195.

    Google Scholar 

  45. Dressler F, Akan OB. A survey on bio-inspired networking. Comput Netw 2010;54(6):881–900.

    MATH  Google Scholar 

  46. José-García A, Gómez-Flores W. Automatic clustering using nature-inspired: a survey. Applied Soft Computing 2016;41:192–213.

    Google Scholar 

  47. Alsalibi B, Venkat I, Subramanian KG, Lutfi SL, Wilde PD. The impact of bio-inspired approaches toward the advancement of face recognition. ACM Computing Surveys 2015;48(5):1–33.

    Google Scholar 

  48. García-Godoy MJ, López-Camacho E, García-Nieto J, Del Ser J, Nebro AJ, Aldana-Montes JF. Bio-inspired optimization for the molecular docking problem: state of the art, recent results and perspectives. Applied Soft Computing 2019;79:30–45.

    Google Scholar 

  49. Kolias C, Kambourakis G, Maragoudakis M. Swarm intelligence in intrusion detection: a survey. Computers and Security 2011;30(8):625–642.

    Google Scholar 

  50. Banks A, Vincent J, Anyakoha C. A review of particle swarm optimization. Part I: background and development. Nat Comput 2007;6(4):467–484.

    MathSciNet  MATH  Google Scholar 

  51. Neri F, Tirronen V. Recent advances in differential evolution: a survey and experimental analysis. Artif Intell Rev 2010;33 (1):61–106.

    Google Scholar 

  52. Das S, Suganthan PN. Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 2011;15(1):4–31.

    Google Scholar 

  53. Das S, Mullick SS, Suganthan PN. Recent advances in differential evolution – An updated survey. Swarm Evol Comput 2016;27:1–30.

    Google Scholar 

  54. Karaboga D, Gorkemli B, Ozturk C, Karaboga N. A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif Intell Rev 2014;42(1):21–57.

    Google Scholar 

  55. Bitam S, Batouche M, Talbi E. A survey on bee colony algorithms. 2010 IEEE International symposium on parallel distributed processing, workshops and Phd forum (IPDPSW); 2010. p. 1–8.

  56. Das S, Biswas A, Dasgupta S, Abraham A. . Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications. Berlin: Springer; 2009. p. 23–55.

  57. Yang XS, He X. Bat algorithm literature review and applications. International Journal of Bio-Inspired Computation 2013;5(3):141–149.

    Google Scholar 

  58. Bonabeau E, Dorigo M, Théraulaz G. Swarm intelligence: from natural to artificial systems. Oxford: Oxford University Press; 1999.

    MATH  Google Scholar 

  59. Yang XS. 2014. Nature-inspired optimization algorithms. Elsevier.

  60. Das S, Abraham A, Konar A. . Particle swarm optimization and differential evolution algorithms: technical analysis, applications and hybridization perspectives. Berlin: Springer; 2008 . p. 1–38.

  61. Elbeltagi E, Hegazy T, Grierson D. Comparison among five evolutionary-based optimization algorithms. Advanced Engineering Informatics 2005;19(1):43–53.

    Google Scholar 

  62. Pazhaniraja N, Paul PV, Roja G, Shanmugapriya K, Sonali B. A study on recent bio-inspired optimization algorithms. 2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN); 2017. p. 1–6.

  63. Krömer P, Platoš J, Snášel V. Nature-inspired meta-heuristics on modern GPUs: state of the art and brief survey of selected algorithms. Int J Parallel Programming 2014;42(5):681–709.

    Google Scholar 

  64. Piotrowski AP, Napiorkowski M, Napiorkowski JJ, Rowinski PM. Swarm intelligence and evolutionary algorithms: performance versus speed. Inf Sci 2017;384:34–85.

    MathSciNet  Google Scholar 

  65. El-Abd M. Performance assessment of foraging algorithms vs. evolutionary algorithms. Inf Sci 2012;182(1):243–263.

    MathSciNet  Google Scholar 

  66. Chouikhi N, Ammar B, Hussain A, Alimi AM. Bi-level multi-objective evolution of a Multi-Layered Echo-State Network Autoencoder for data representations. Neurocomputing. 2019;341:195–211.

    Google Scholar 

  67. Chouikhi N, Ammar B, Rokbani N, Alimi AM. PSO-based analysis of Echo State Network parameters for time series forecasting. Applied Soft Computing 2017;55:211–225.

    Google Scholar 

  68. Fister jr I, Yang XS, Fister I, Brest J, Fister D. A brief review of nature-inspired algorithms for optimization. Elektrotehniski Vestnik 2013;80(3):1–7.

    Google Scholar 

  69. Baskaran A, Balaji N, Basha S, Vengattaraman T. A survey of nature inspired algorithms. Int J Appl Eng Res 2015;10:19313–19324.

    Google Scholar 

  70. Rajakumar R, Dhavachelvan P, Vengattaraman T. A survey on nature inspired meta-heuristic algorithms with its domain specifications. 2016 International Conference on Communication and Electronics Systems (ICCES); 2016. p. 1–6.

  71. Kumar Kar A. Bio inspired computing – A review of algorithms and scope of applications. Expert Systems With Applications 2016;59:20–32.

    Google Scholar 

  72. Chu X, Wu T, Weir JD, Shi Y, Niu B, Li L. 2018. Learning–interaction–diversification framework for swarm intelligence optimizers: a unified perspective. Neural Computing and Applications, pp. 1–21.

  73. Caraveo C, Valdez F, Castillo O. A new optimization meta-heuristic algorithm based on self-defense mechanism of the plants with three reproduction operators. Soft Computing 2018;22(15):4907–4920.

    Google Scholar 

  74. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H. Harris hawks optimization: algorithm and applications. Future Generation Computer Systems 2019;97:849–872.

    Google Scholar 

  75. Huang G. Artificial infectious disease optimization: a SEIQR epidemic dynamic model-based function optimization algorithm. Swarm Evol Comput 2016;27:31–67.

    Google Scholar 

  76. Farasat A, Menhaj MB, Mansouri T, Sadeghi Moghadamd MR. ARO: a new model-free optimization algorithm inspired from asexual reproduction. Appl Soft Computing 2010;10(4):1284–1292.

    Google Scholar 

  77. Simon D. Biogeography-based optimization. IEEE Trans Evol Comput 2008;12(6):702–713.

    Google Scholar 

  78. Askarzadeh A. Bird mating optimizer: an optimization algorithm inspired by bird mating strategies. Communications in Nonlinear Science and Numerical Simulation 2014;19(4):1213–1228.

    MathSciNet  MATH  Google Scholar 

  79. Zhang X, Sun B, Mei T, Wang R. Post-disaster restoration based on fuzzy preference relation and Bean Optimization Algorithm. 2010 IEEE Youth conference on information, computing and telecommunications; 2010. p. 271–274.

  80. Greensmith J, Aickelin U, Cayzer S. Introducing dendritic cells as a novel immune-inspired algorithm for anomaly detection. International conference on artificial immune systems. Springer; 2005. p. 153–167.

  81. Price K, Storn R. A simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 1997;11(4):341–359.

    MathSciNet  MATH  Google Scholar 

  82. Zheng YJ, Ling HF, Xue JY. Ecogeography-based optimization: enhancing biogeography-based optimization with ecogeographic barriers and differentiations. Comput Oper Res 2014;50:115–127.

    MATH  Google Scholar 

  83. Parpinelli RS, Lopes HS. An eco-inspired evolutionary algorithm applied to numerical optimization. 2011 Third world congress on nature and biologically inspired computing; 2011. p. 466–471.

  84. Wang GG, Deb S, dos Santos Coelho L. Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems. IJBIC. 2018;12(1):1–22.

    Google Scholar 

  85. Beyer HG, Schwefel HP. Evolution strategies – A comprehensive introduction. Nat Comput 2002;1(1):3–52.

    MathSciNet  MATH  Google Scholar 

  86. Man KF, Tang KS, Kwong S. Genetic algorithms: concepts and applications [in engineering design]. IEEE Trans Ind sElectron 1996;43(5):519–534.

    Google Scholar 

  87. Ferreira C. . Gene expression programming in problem solving. London: Springer; 2002. p. 635–653.

  88. Cortés P, García JM, Onieva L, Muñuzuri J, Guadix J. Viral system to solve optimization problems: an immune-inspired computational intelligence approach. Artificial immune systems; 2008. p. 83–94.

  89. Tayeb FBS, Bessedik M, Benbouzid M, Cheurfi H, Blizak A. Research on permutation flow-shop scheduling problem based on improved genetic immune algorithm with vaccinated offspring. Procedia Computer Science 2017;112:427–436.

    Google Scholar 

  90. Mehrabian AR, Lucas C. A novel numerical optimization algorithm inspired from weed colonization. Ecological Informatics 2006;1(4):355–366.

    Google Scholar 

  91. Abbass HA. MBO: marriage in honey bees optimization-a Haplometrosis polygynous swarming approach. Proceedings of the 2001 IEEE congress on evolutionary computation; 2001. p. 207–214.

  92. Jung SH. Queen-bee evolution for genetic algorithms. Electron Lett 2003;39(6):575–576.

    Google Scholar 

  93. Anandaraman C, Sankar AVM, Natarajan R. A new evolutionary algorithm based on bacterial evolution and its application for scheduling a flexible manufacturing system. Jurnal Teknik Industri 2012;14(1): 1–12.

    Google Scholar 

  94. Taherdangkoo M, Yazdi M, Bagheri MH. Stem cells optimization algorithm. Bio-inspired computing and applications. In: Huang D S, Gan Y, Premaratne P, and Han K, editors. Berlin: Springer; 2012. p. 394–403.

  95. Nara K, Takeyama T, Hyungchul K. A new evolutionary algorithm based on sheep flocks heredity model and its application to scheduling problem. IEEE SMC’99 conference proceedings. 1999 IEEE international conference on systems, man, and cybernetics; 1999. p. 503–508.

  96. Pattnaik SS, Bakwad KM, Sohi BS, Ratho RK, Devi S. Swine influenza models based optimization (SIMBO). Applied Soft Computing 2013;13(1):628–653.

    Google Scholar 

  97. Zelinka I. . SOMA — Self-Organizing Migrating Algorithm. Berlin: Springer; 2004. p. 167–217.

  98. Puris A, Bello R, Molina D, Herrera F. Variable mesh optimization for continuous optimization problems. Soft Computing 2012;16(3):511–525.

    Google Scholar 

  99. Jaderyan M, Khotanlou H. Virulence optimization algorithm. Applied Soft Computing 2016; 43:596–618.

    Google Scholar 

  100. Brabazon A, McGarraghy S. 2018. Foraging-inspired optimisation algorithms. Natural Computing Series, Springer.

  101. Uymaz SA, Tezel G, Yel E. Artificial algae algorithm (AAA) for nonlinear global optimization. Applied Soft Computing 2014;31:153–171.

    Google Scholar 

  102. Muoz MA, Lpez JA, Caicedo E. An artificial beehive algorithm for continuous optimization. Int J Intell Sys 2009;24(11):1080–1093.

    Google Scholar 

  103. Naderi B, Khalili M, Khamseh AA. Mathematical models and a hunting search algorithm for the no-wait flowshop scheduling with parallel machines. Int J Production Res 2014;52(9):2667–2681.

    Google Scholar 

  104. Odili JB, Mohmad Kahar MN. Solving the traveling salesman’s problem using the african buffalo optimization. Computational Intell Neurosci 2016;2016:1–12.

    Google Scholar 

  105. Almonacid B, Soto R. Andean condor algorithm for cell formation problems. Nat Comput 2019; 18(2):351–381.

    MathSciNet  Google Scholar 

  106. Mirjalili S. The ant lion optimizer. Adv Eng Softw 2015;83:80–98.

    Google Scholar 

  107. Chen T, Pang L, Du J, Liu Z, Zhang L. Artificial searching swarm algorithm for solving constrained optimization problems. 2009 IEEE international conference on intelligent computing and intelligent systems; 2009. p. 562–565.

  108. Chen T, Wang Y, Li J. Artificial tribe algorithm and its performance analysis. J Softw 2012;7(3):651–656.

    Google Scholar 

  109. Subramanian C, Sekar ASS, Subramanian K. A new engineering optimization method african wild dog algorithm. Int J Soft Comput 2013;8(3):163–170.

    Google Scholar 

  110. Alsattar HA, Zaidan AA, Zaidan BB. 2019. Novel meta-heuristic bald eagle search optimisation algorithm. Artif Intell Rev, pp 1–28.

  111. Pham DT, Ghanbarzadeh A, Koç E, Otri S, Rahim S, Zaidi M. The bees algorithm – A novel tool for complex optimisation problems. Intelligent production machines and systems. Elsevier Science Ltd; 2006. p. 454–459.

  112. Comellas F, Martinez-Navarro J. Bumblebees: a multiagent combinatorial optimization algorithm inspired by social insect behaviour. Proceedings of the first ACM/SIGEVO summit on genetic and evolutionary computation. GEC ’09; 2009 . p. 811–814.

  113. Kazikova A, Pluhacek M, Senkerik R, Viktorin A. Proposal of a new swarm optimization method inspired in bison behavior. Advances in Intelligent Systems and Computing 2019;837:146–156.

    Google Scholar 

  114. Häckel S, Dippold P. The Bee Colony-inspired Algorithm (BCiA): a two-stage approach for solving the vehicle routing problem with time windows. Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation. GECCO ’09; 2009. p. 25–32.

  115. Teodorovií D, Dell’Orco M. 2005. Bee colony optimization - A cooperative learning approach to complex transportation problems. Advanced OR and AI Methods in Transportation, pp 51–60.

  116. Niu B, Wang H. Bacterial colony optimization: principles and foundations. Emerging intelligent computing technology and applications; 2012. p. 501–506.

  117. Mller SD, Marchetto J, Airaghi S, Koumoutsakos P. Optimization based on bacterial chemotaxis. IEEE Trans Evol Comput 2002;6(1):16–29.

    Google Scholar 

  118. Chen T, Tsai P, Chu S, Pan J. A novel optimization approach: Bacterial-GA Foraging. Second international conference on innovative computing, Informatio and Control (ICICIC 2007); 2007. p. 391–391.

  119. Wedde HF, Farooq M, Zhang Y. BeeHive: an efficient fault-tolerant routing algorithm inspired by honey bee behavior. Ant colony optimization and swarm intelligence, proceeding; 2004. p. 83–94.

  120. Bitam S, Zeadally S, Mellouk A. Fog computing job scheduling optimization based on bees swarm. Enterprise Inf Sys 2018;12(4):373–397.

    Google Scholar 

  121. Malakooti B, Kim H, Sheikh S. Bat intelligence search with application to multi-objective multiprocessor scheduling optimization. Int J Adv Manuf Technol 2012;60(9-12):1071–1086.

    Google Scholar 

  122. Zhang Q, Wang R, Yang J, Lewis A, Chiclana F, Yang S. Biology migration algorithm: a new nature-inspired heuristic methodology for global optimization. Soft Computing 2019;23(16):7333–7358.

    Google Scholar 

  123. Taherdangkoo M, Shirzadi MH, Yazdi M, Bagher MH. A robust clustering method based on blind, naked mole-rats (BNMR) algorithm. Swarm Evol Comput 2013;10:1–11.

    Google Scholar 

  124. Kumar A, Misra RK, Singh D. Butterfly optimizer. 2015 IEEEWorkshop on Computational Intelligence: Theories, Applications and Future Directions (WCI); 2015. p. 1–6.

  125. Sato T, Hagiwara M. Bee system: finding solution by a concentrated search. Proceedings of the IEEE international conference on systems, man and cybernetics; 1997 . p. 3954–3959.

  126. Lucic P, Teodorovic D. Transportation modeling: an artificial life approach. 14th IEEE International conference on tools with artificial intelligence, 2002. (ICTAI 2002). Proceedings; 2002. p. 216–223.

  127. Meng XB, Gao XZ, Lu L, Liu Y, Zhang HA. new bio-inspired optimisation algorithm: Bird Swarm Algorithm. Journal of Experimental and Theoretical Artificial Intelligence 2016;28(4):673–687.

    Google Scholar 

  128. Akbari R, Mohammadi A, Ziarati K. A novel bee swarm optimization algorithm for numerical function optimization. Communications in Nonlinear Science and Numerical Simulation 2010;15(10):3142–3155.

    MathSciNet  MATH  Google Scholar 

  129. de Oliveira DR, Parpinelli RS, Lopes HS. 5. Bioluminescent swarm optimization algorithm. IntechOpen; 2011.

  130. Drias H, Sadeg S, Yahi S. Cooperative bees swarm for solving the maximum weighted satisfiability problem. Computational Intelligence and Bioinspired Systems; 2005. p. 318–325.

  131. SR K, Panwar L, Panigrahi BK, Kumar R. Binary whale optimization algorithm: a new metaheuristic approach for profit-based unit commitment problems in competitive electricity markets. Engineering Optimization 2019;51(3):369–389.

    MathSciNet  Google Scholar 

  132. Cuevas E, González M, Zaldivar D, Pérez-Cisneros M, García G. An algorithm for global optimization inspired by collective animal behavior. Discrete Dynamics in Nature and Society 2012; 2012:1–24.

    Google Scholar 

  133. Klein CE, Mariani VC, Coelho LDS. 2018. Cheetah based optimization algorithm: a novel swarm intelligence paradigm, pp 685–690.

  134. Shiqin Y, Jianjun J, Guangxing Y. Improved binary particle swarm optimization using catfish effect for feature selection. Expert Systems with Applications 2011;38(10):12699–12707.

    Google Scholar 

  135. Canayaz M, Karci A. Cricket behaviour-based evolutionary computation technique in solving engineering optimization problems. Appl Intell 2016;44(2):362–376.

    Google Scholar 

  136. Pierezan J, Maidl G, Massashi Yamao E, dos Santos Coelho L, Cocco Mariani V. 2019. Cultural coyote optimization algorithm applied to a heavy duty gas turbine operation. Energy Conversion and Management, vol 199.

  137. Sayed GI, Tharwat A, Hassanien AE. Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection. Applied Intelligence 2019;49(1):188–205.

    Google Scholar 

  138. Eesa Sabry A, Adbulazeez Brifcani AM, Orman Z. Cuttlefish algorithm – a novel bio-inspired optimization algorithm. International Journal of Scientific and Engineering Research 2013;4(9):1978–1986.

    Google Scholar 

  139. Iordache S. A hierarchical cooperative evolutionary algorithm. Proceedings of the 12th annual conference on genetic and evolutionary computation. GECCO ’10; 2010. p. 225–232.

  140. Rajabioun R. Cuckoo Optimization Algorithm. Applied Soft Computing 2011;11(8):5508–5518.

    Google Scholar 

  141. Ibrahim MK, Salim Ali R. Novel optimization algorithm inspired by camel traveling behavior. Iraq Journal Electrical and Electronic Engineering 2016;12(2):167–177.

    Google Scholar 

  142. Pierezan J, Dos Santos Coelho L. Coyote optimization algorithm: a new metaheuristic for global optimization problems. 2018 IEEE Congress on Evolutionary Computation (CEC); 2018. p. 1–8.

  143. Yang X, Deb S. Cuckoo Search via Lévy flights. 2009 World Congress on Nature Biologically Inspired Computing (NaBIC); 2009. p. 210–214.

  144. Askarzadeh A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Computers and Structures 2016;169:1–12.

    Google Scholar 

  145. Chu SC, Tsai PW, Pan JS. Cat swarm optimization. PRICAI 2006: Trends in artificial intelligence; 2006. p. 854–858.

  146. Meng X, Liu Y, Gao X, Zhang HA. New bio-inspired algorithm: chicken swarm optimization. Advances in Swarm Intelligence. In: Tan Y, Shi Y, and Coello C A C, editors; 2014 . p. 86–94.

  147. Kaveh A, method Farhoudi N. A new optimization Dolphin echolocation. Adv Eng Softw 2013; 59:53–70.

    Google Scholar 

  148. Shiqin Y, Jianjun J, Guangxing Y. A dolphin partner optimization. 2009 WRI Global congress on intelligent systems; 2009. p. 124–128.

  149. Wang G, Deb S, dos Santos Coelho L. Elephant herding optimization. 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI); 2015. p. 1–5.

  150. Yang XS, Deb S. . Eagle strategy using Lévy walk and firefly algorithms for stochastic optimization. Berlin: Springer; 2010 . p. 101–111.

  151. Deb S, Fong S, Tian Z. 2015. Elephant search algorithm for optimization problems. The Tenth International Conference on Digital Information Management, pp 249–255.

  152. Sur C, Sharma S, Shukla A. Egyptian vulture optimization algorithm – A new nature inspired meta-heuristics for knapsack problem. The 9th international conference on computing and information Technology (IC2IT2013); 2013. p. 227–237.

  153. Cui X, Gao J, Potok TE. A flocking based algorithm for document clustering analysis. J Sys Archit 2006;52(8-9):505–515.

    Google Scholar 

  154. Chu Y, Mi H, Liao H, Ji Z, Wu QH. A fast bacterial swarming algorithm for high-dimensional function optimization. 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence); 2008 . p. 3135–3140.

  155. Mutazono A, Sugano M, Murata M. Frog call-inspired self-organizing anti-phase synchronization for wireless sensor networks. 2009 2nd International workshop on nonlinear dynamics and synchronization; 2009. p. 81–88.

  156. Bellaachia A, Bari A. Flock by leader: a novel machine learning biologically inspired clustering algorithm. Advances in swarm intelligence. Berlin: Springer; 2012. p. 117–126.

  157. Pan WT. A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowledge-Based Systems 2012;26:69–74.

    Google Scholar 

  158. Tsai HC, Lin YH. Modification of the fish swarm algorithm with particle swarm optimization formulation and communication behavior. Appl Soft Comput 2011;11(8):5367–5374.

    Google Scholar 

  159. Bastos Filho CJA, de Lima Neto FB, Lins AJCC, Nascimento AIS, Lima MP. A novel search algorithm based on fish school behavior. 2008 IEEE International Conference on Systems, Man and Cybernetics; 2008. p. 2646–2651.

  160. Min H, Wang Z. Design and analysis of group escape behavior for distributed autonomous mobile robots. 2011 IEEE international conference on robotics and automation; 2011 . p. 6128–6135.

  161. Su S, Wang J, Fan W, Yin X. Good Lattice Swarm Algorithm for constrained engineering design optimization. 2007 International conference on wireless communications, networking and mobile computing; 2007. p. 6421–6424.

  162. He S, Wu QH, Saunders JR. Group Search Optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans Evol Comput 2009;13(5):973–990.

    Google Scholar 

  163. Wang J, Wang D. Particle swarm optimization with a leader and followers. Progress in Natural Science 2008;18(11):1437–1443.

    Google Scholar 

  164. Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng Softw 2014;69:46–61.

    Google Scholar 

  165. El-Dosuky M, El-Bassiouny A, Hamza T, Rashad M. New hoopoe heuristic optimization. Int J Sci Adv Technol 2012;2(9):85–90.

    Google Scholar 

  166. Oftadeh R, Mahjoob MJ, Shariatpanahi M. A novel meta-heuristic optimization algorithm inspired by group hunting of animals: Hunting search. Computers and Mathematics with Applications 2010;60(7): 2087–2098.

    MATH  Google Scholar 

  167. Quijano N, Passino KM. Honey bee social foraging algorithms for resource allocation, Part I: algorithm and theory. 2007 American control conference; 2007. p. 3383–3388.

  168. Chen H, Zhu Y, Hu K, He X. Hierarchical Swarm Model: a new approach to optimization. Discrete Dynamics in Nature and Society 2010;2010:1–30.

    MATH  Google Scholar 

  169. Maciel O, Valdivia A, Oliva D, Cuevas E, Zaldívar D, Pérez-Cisneros M. 2019. A novel hybrid metaheuristic optimization method: hypercube natural aggregation algorithm. Soft Computing.

  170. Torabi S, Safi-Esfahani F. Improved Raven Roosting Optimization algorithm (IRRO). Swarm and Evolutionary Computation 2018;40:144–154.

    Google Scholar 

  171. Tang D, Dong S, Jiang Y, Li H, Huang Y. ITGO Invasive tumor growth optimization algorithm. Applied Soft Computing 2015;36:670–698.

    Google Scholar 

  172. Chen C, Tsai Y, Liu I, Lai C, Yeh Y, Kuo S, et al. A novel metaheuristic: Jaguar algorithm with learning behavior. 2015 IEEE international conference on systems, man, and cybernetics; 2015. p. 1595–1600.

  173. Biyanto TR, Irawan S, Febrianto HY, Afdanny N, Rahman AH, Gunawan KS, et al. Killer whale algorithm: an algorithm inspired by the life of killer whale. Procedia Computer Science 2017;124: 151–157.

    Google Scholar 

  174. Rajakumar BR. The Lion’s Algorithm: a new nature-inspired search algorithm. Procedia Technology 2012;6:126–135.

    Google Scholar 

  175. Wang P, Zhu Z, Huang S. Seven-Spot Ladybird Optimization: a novel and efficient metaheuristic algorithm for numerical optimization. The Scientific World Journal 2013;2013:1–11.

    Google Scholar 

  176. Hosseini E. Laying chicken algorithm: a new meta-heuristic approach to solve continuous programming problems. J Appl Comput Math 2017;6(1):344–351.

    MathSciNet  Google Scholar 

  177. Yazdani M, Jolai F. Lion Optimization Algorithm (LOA): a nature-inspired metaheuristic algorithm. Journal of Computational Design and Engineering 2016;3(1):24–36.

    Google Scholar 

  178. Chen S. An analysis of locust swarms on large scale global optimization problems. Artificial life: borrowing from biology; 2009. p. 211–220.

  179. Mo H, Xu L. Magnetotactic bacteria optimization algorithm for multimodal optimization. 2013 IEEE Symposium on Swarm Intelligence (SIS); 2013. p. 240–247.

  180. Wang GG, Deb S, Cui Z. 2015. Monarch butterfly optimization. Neural Computing and Applications, pp 1–20.

  181. Duman E, Uysal M, Alkaya AF. Migrating birds optimization: A new metaheuristic approach and its performance on quadratic assignment problem. Inf Sci 2012;217:65–77.

    MathSciNet  Google Scholar 

  182. Jahani E, Chizari M. Tackling global optimization problems with a novel algorithm – Mouth Brooding Fish algorithm. Applied Soft Computing Journal 2018;62:987–1002.

    Google Scholar 

  183. Walton S, Hassan O, Morgan K, Brown MR. Modified cuckoo search: a new gradient free optimisation algorithm. Chaos, Solitons and Fractals 2011;44(9):710–718.

    Google Scholar 

  184. Obagbuwa IC, Adewumi AO. 2014. An improved cockroach swarm optimization. Scientific World Journal 1–13.

  185. Mirjalili S. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowledge-Based Systems 2015;89:228–249.

    Google Scholar 

  186. Alauddin M. Mosquito flying optimization (MFO). 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). IEEE; 2016. p. 79–84.

  187. Klein CE, Coelho LDS. 2018. Meerkats-inspired algorithm for global optimization problems, pp 679–684.

  188. ul Amir Afsar Minhas F, Arif M. MOX: a novel global optimization algorithm inspired from Oviposition site selection and egg hatching inhibition in mosquitoes. Applied Soft Computing 2011;11(8):4614–4625.

    Google Scholar 

  189. Mucherino A, Seref O. Monkey search: a novel metaheuristic search for global optimization. American Institute of Physics; 2007. p. 162–173.

  190. Luo F, Zhao J, Dong ZY. A new metaheuristic algorithm for real-parameter optimization: natural aggregation algorithm. 2016 IEEE Congress on Evolutionary Computation (CEC); 2016. p. 94–103.

  191. Salgotra R, Singh U. 2019. The naked mole-rat algorithm. Neural Computing and Applications.

  192. Salih SQ, Alsewari AA. 2019. A new algorithm for normal and large-scale optimization problems: Nomadic People Optimizer. Neural Computing and Applications.

  193. Maia RD, de Castro LN, Caminhas WM. OptBees - A bee-inspired algorithm for solving continuous optimization problems. 2013 BRICS congress on computational intelligence and 11th brazilian congress on computational intelligence; 2013 . p. 142–151.

  194. Zhu GY, Zhang WB. Optimal foraging algorithm for global optimization. Applied Soft Computing 2017;51:294–313.

    Google Scholar 

  195. Kallioras NA, Lagaros ND, Avtzis DN. Pity beetle algorithm – A new metaheuristic inspired by the behavior of bark beetles. Adv Eng Softw 2018;121:147–166.

    Google Scholar 

  196. Duan H, Qiao P. Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning. Int J Intell Comput Cybern 2014;7(1):24–37.

    MathSciNet  Google Scholar 

  197. Zhang W, Luo Q, Zhou Y. A method for training RBF Neural networks based on population migration algorithm. Proceedings of the 2009 international conference on artificial intelligence and computational intelligence - Volume 01. AICI ’09; 2009. p. 165–169.

  198. Tilahun SL, algorithm Choon Ong H. Prey-predator A new metaheuristic algorithm for optimization problems. International Journal of Information Technology and Decision Making 2015;14(6):1331–1352.

    Google Scholar 

  199. Gheraibia Y, Moussaoui A. Penguins Search Optimization Algorithm (PeSOA). Recent trends in applied artificial intelligence; 2013. p. 222–231.

  200. Arora S, Singh S. Butterfly optimization algorithm: a novel approach for global optimization. Soft Computing 2019;23(3):715–734.

    Google Scholar 

  201. Fard AF, Hajiaghaei-Keshteli M. Red Deer Algorithm (RDA); a new optimization algorithm inspired by Red Deers’ mating. International conference on industrial engineering, IEEE.,(2016 e); 2016. p. 33–34.

  202. Wang GG, Gao XZ, Zenger K, dos Santos Coelho L. A novel metaheuristic algorithm inspired by rhino herd behavior. Proceedings of The 9th EUROSIM Congress on Modelling and Simulation, EUROSIM 2016, The 57th SIMS Conference on Simulation and Modelling SIMS 2016. 142. Linköping University Electronic Press; 2018. p. 1026–1033.

  203. Havens T, Spain CJ, Salmon NG, Keller JM. Roach infestation optimization. 2008 IEEE swarm intelligence symposium, SIS 2008; 2008. p. 1–7.

  204. Sharma A. A new optimizing algorithm using reincarnation concept. 2010 11th International Symposium on Computational Intelligence and Informatics (CINTI); 2010. p. 281–288.

  205. Hersovici M, Jacovi M, Maarek YS, Pelleg D, Shtalhaim M, Ur S. The shark-search algorithm. An application: tailored Web site mapping. Computer Networks and ISDN Systems 1998;30(1):317–326.

    Google Scholar 

  206. McCaffrey JD. Generation of pairwise test sets using a simulated bee colony algorithm. 2009 IEEE international conference on information reuse integration; 2009. p. 115–119.

  207. Samareh Moosavi SH, Khatibi Bardsiri V. Satin bowerbird optimizer: a new optimization algorithm to optimize ANFIS for software development effort estimation. Engineering Applications of Artificial Intelligence 2017;60:1–15.

    Google Scholar 

  208. Mirjalili S. SCA: a Sine Cosine Algorithm for solving optimization problems. Knowledge-Based Systems 2016;96:120–133.

    Google Scholar 

  209. Rakhshani H, Rahati A. Snap-drift cuckoo search: a novel cuckoo search optimization algorithm. Applied Soft Computing 2017;52:771–794.

    MATH  Google Scholar 

  210. Eusuff M, Lansey K, Pasha F. Shuffled frog-leaping algorithm: a memetic metaheuristic for discrete optimization. Engineering Optimization 2006;38(2):129–154.

    MathSciNet  Google Scholar 

  211. Dhiman G, Kumar V. Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 2017;114:48–70.

    Google Scholar 

  212. Su MC, Su SY, Zhao YX. A swarm-inspired projection algorithm. Pattern Recogn 2009; 42(11):2764–2786.

    MATH  Google Scholar 

  213. Monismith DR, Mayfield BE. Slime mold as a model for numerical optimization. 2008 IEEE Swarm Intelligence Symposium; 2008. p. 1–8.

  214. Chand Bansal J, Sharma H, Singh Jadon S, Clerc M. Spider Monkey Optimization algorithm for numerical optimization. Memetic Computation 2014;6:31–47.

    Google Scholar 

  215. Dai C, Zhu Y, Chen W. Seeker optimization algorithm. Computational intelligence and security; 2007. p. 167–176.

  216. Cheng MY, Prayogo D. Symbiotic Organisms Search: a new metaheuristic optimization algorithm. Computers and Structures 2014;139:98–112.

    Google Scholar 

  217. Yu JJQ, Li VOK. A social spider algorithm for global optimization. Applied Soft Computing 2015;30:614–627.

    Google Scholar 

  218. Jain M, Singh V, Rani A. A novel nature-inspired algorithm for optimization: Squirrel search algorithm. Swarm and Evolutionary Computation 2019;44:148–175.

    Google Scholar 

  219. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM. Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Adv Eng Softw 2017;114:163–191.

    Google Scholar 

  220. Abedinia O, Amjady N, Ghasemi A. A new metaheuristic algorithm based on shark smell optimization. Complexity. 2016;21(5):97–116.

    MathSciNet  Google Scholar 

  221. Neshat M, Sepidnam G, Sargolzaei M. Swallow swarm optimization algorithm: a new method to optimization. Neural Computing and Applications 2013;23(2):429–454.

    Google Scholar 

  222. Cuevas E, Cienfuegos M, Zádivar D, Pérez-Cisneros M. A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Systems with Applications 2013;40(16):6374–6384.

    Google Scholar 

  223. Omidvar R, Parvin H, Rad F. SSPCO Optimization Algorithm (See-See Partridge Chicks Optimization). 2015 Fourteenth Mexican International Conference on Artificial Intelligence (MICAI); 2015. p. 101–106.

  224. Haiyan Q, Xinling S. A surface-simplex swarm evolution algorithm. Adv Eng Softw 2017;22 (1):38–50.

    MATH  Google Scholar 

  225. Ebrahimi A, Khamehchi E. Sperm whale algorithm: an effective metaheuristic algorithm for production optimization problems. Journal of Natural Gas Science and Engineering 2016;29:211–222.

    Google Scholar 

  226. Zungeru AM, Ang LM, Seng KP. Termite-hill: performance optimized swarm intelligence based routing algorithm for wireless sensor networks. J Netw Comput Appl 2012;35(6):1901–1917.

    Google Scholar 

  227. Hedayatzadeh R, Akhavan Salmassi F, Keshtgari M, Akbari R, Ziarati K. Termite colony optimization: a novel approach for optimizing continuous problems. 2010 18th Iranian conference on electrical engineering; 2010. p. 553–558.

  228. Mozaffari A, Goudarzi AM, Fathi A. Bio-inspired methods for fast and robust arrangement of thermoelectric modulus. International Journal of Bio-Inspired Computation (IJBIC) 2013;5(1):19–34.

    Google Scholar 

  229. Yang X, Lees JM, Morley CT. 2006: Proceedings, Part I.

  230. Yang XS. Engineering optimizations via nature-inspired virtual bee algorithms. Artificial intelligence and knowledge engineering applications: a bioinspired approach. In: Mira J and Álvarez J R, editors. Springer; 2005. p. 317–323.

  231. Li MD, Zhao H, Weng XW, Han T. A novel nature-inspired algorithm for optimization: Virus colony search. Adv Eng Softw 2016;92:65–88.

    Google Scholar 

  232. Juarez JRC, Wang HJ, Lai YC, Liang YC. Virus Optimization Algorithm (VOA): a novel metaheuristic for solving continuous optimization problems. Proceedings of the 2009 Asia Pacific Industrial Engineering and Management Systems Conference (APIEMS 2009); 2009. p. 2166–2174.

  233. Cortés P, García J M, Muñuzuri J, Onieva L. Viral systems: a new bio-inspired optimisation approach. Comput Oper Res 2008;35:2840–2860.

    MATH  Google Scholar 

  234. Liu CY, Yan XH, Wu H. The wolf colony algorithm and its application. Chinese Journal of Electronics 2011;20:212–216.

    Google Scholar 

  235. Arnaout JP. Worm Optimization: a novel optimization algorithm inspired by C. Elegans. Proceedings of the 2014 International conference on industrial engineering and operations management; 2014. p. 2499–2505.

  236. Yang C, Tu X, Chen J. Algorithm of marriage in honey bees optimization based on the wolf pack search. Proceedings of the The 2007 International conference on intelligent pervasive computing; 2007. p. 462–467.

  237. Ting TO, Man KL, Guan SU, Nayel M, Wan K. Weightless Swarm Algorithm (WSA) for dynamic optimization problems. Network and Parallel Computing, IFIP International conference on network and parallel computing. In: Park JJ, Zomaya A, Yeo S S, and Sahni S, editors; 2012. p. 508–515.

  238. Tang R, Fong S, Yang XS, Deb S. Wolf search algorithm with ephemeral memory. Seventh International Conference on Digital Information Management (ICDIM 2012); 2012 . p. 165–172.

  239. Pinto P, Runkler TA, Sousa JM. Wasp swarm optimization of logistic systems. Adaptive and natural computing algorithms; 2005. p. 264–267.

  240. Nguyen HT, Bhanu B. Zombie Survival Optimization: a swarm intelligence algorithm inspired by zombie foraging. 21st International Conference on Pattern Recognition (ICPR 2012); 2012. p. 987–990.

  241. Hatamlou A. Black hole: a new heuristic optimization approach for data clustering. Inf Sci 2013; 222:175–184.

    MathSciNet  Google Scholar 

  242. Yadav A, Yadav A. AEFA: artificial electric field algorithm for global optimization. Swarm and Evolutionary Computation 2019;48:93–108.

    Google Scholar 

  243. Xie L, Zeng J, Cui Z. General framework of artificial physics optimization algorithm. 2009 World Congress on Nature Biologically Inspired Computing (NaBIC); 2009. p. 1321–1326.

  244. Erol OK, method Eksin I. A new optimization: Big Bang–Big Crunch. Adv Eng Softw 2006; 37(2):106–111.

    Google Scholar 

  245. Kaveh A, Mahdavi VR. Colliding bodies optimization: a novel meta-heuristic method. Comput Struct 2014;139:18–27.

    Google Scholar 

  246. Feng X, Ma M, Yu H. Crystal energy optimization algorithm. Computational Intelligence 2016;32(2):284–322.

    MathSciNet  MATH  Google Scholar 

  247. Formato R. . Central Force Optimization: a new nature inspired computational framework for multidimensional search and optimization. Berlin: Springer; 2008. p. 221–238.

  248. Kaveh A, Talatahari S. A novel heuristic optimization method: charged system search. Acta Mechanica 2010;213(3-4):267–289.

    MATH  Google Scholar 

  249. Kundu S. Gravitational clustering: a new approach based on the spatial distribution of the points. Pattern Recognition 1999;32(7):1149–1160.

    MathSciNet  Google Scholar 

  250. Barzegar B, Rahmani AM, Far KZ. Gravitational emulation local search algorithm for advanced reservation and scheduling in grid systems. 2009 First Asian Himalayas international conference on internet; 2009. p. 1–5.

  251. Zheng M. Liu Gx, Zhou Cg, Liang Yc, Wang Y. Gravitation field algorithm and its application in gene cluster. Algorithms for Molecular Biology 2010;5(1):1–32.

    Google Scholar 

  252. Flores JJ, López R, Barrera J. Gravitational interactions optimization. Learning and intelligent optimization; 2011 . p. 226–237.

  253. Beiranvand H, Rokrok E. General Relativity Search Algorithm: a global optimization approach. Int J Comput Intell Appl 2015;14(3):1–29.

    Google Scholar 

  254. Muthiah-Nakarajan V, Noel MM. Galactic Swarm Optimization: a new global optimization metaheuristic inspired by galactic motion. Appl Soft Comput 2016;38:771–787.

    Google Scholar 

  255. Cui Y, Guo R, Guo D. Lambda algorithm. J Uncertain Sys 2010;4(1):22–33.

    Google Scholar 

  256. Zaránd G, Pázmándi F, Pál KF, Zimányi GT. Using hysteresis for optimization. Phys Rev Lett 2002;89:150201.

    Google Scholar 

  257. Rbouh I, El Imrani AA. Hurricane-based optimization algorithm. AASRI Procedia 2014;6: 26–33.

    Google Scholar 

  258. Shah-Hosseini H. The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm. Int J Bio-Inspired Computation 2009;1(1):71–79.

    Google Scholar 

  259. Shen J, Li J. The principle analysis of light ray optimization algorithm. 2010 Second international conference on computational intelligence and natural computing; 2010. p. 154–157.

  260. Shareef H, Ibrahim AA, Mutlag AH. Lightning search algorithm. Appl Soft Comput 2015;36:315–333.

    Google Scholar 

  261. Tayarani-N MH, Akbarzadeh-T MR. Magnetic optimization algorithms a new synthesis. 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence); 2008. p. 2659–2664.

  262. Mora-Gutiérrez RA, Ramírez-Rodríguez J, Rincón-García EA. An optimization algorithm inspired by musical composition. Artif Intell Rev 2014;41(3):301–315.

    Google Scholar 

  263. Ashrafi SM, Dariane AB. A novel and effective algorithm for numerical optimization: Melody Search (MS). 2011 11th International Conference on Hybrid Intelligent Systems (HIS); 2011. p. 109–114.

  264. Mirjalili S, Mirjalili SM, Hatamlou A. Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 2016;27(2):495–513.

    Google Scholar 

  265. Kashan AH. A new metaheuristic for optimization: optics inspired optimization (OIO). Comput Oper Res 2015;55:99–125.

    MathSciNet  MATH  Google Scholar 

  266. Sacco WF, Filho HA, De Oliveira CRE. A populational particle collision algorithm applied to a nuclear reactor core design optimization. Joint international topical meeting on mathematics and computations and supercomputing in nuclear applications, M and C + SNA 2007; 2007. p. 1–10.

  267. Taillard ÉD, Voss S. . Popmusic — Partial Optimization Metaheuristic under Special Intensification Conditions. Springer US; 2002. p. 613–629.

  268. Saire JEC, Túpac VYJ. An approach to real-coded quantum inspired evolutionary algorithm using particles filter. 2015 Latin America Congress on Computational Intelligence (LA-CCI). IEEE; 2015. p. 1–6.

  269. Kaboli SHA, Selvaraj J, Rahim NA. Rain-fall optimization algorithm: a population based algorithm for solving constrained optimization problems. J Computational Sci 2017;19:31–42.

    Google Scholar 

  270. Rabanal P, Rodríguez I, Rubio F. Using river formation dynamics to design heuristic algorithms. Unconventional computation; 2007. p. 163–177.

  271. Rahmani R, Yusof R. A new simple, fast and efficient algorithm for global optimization over continuous search-space problems: Radial Movement Optimization. Applied Mathematics and Computation 2014; 248:287–300.

    MathSciNet  MATH  Google Scholar 

  272. Kaveh A, Khayatazad M. A new meta-heuristic method: Ray Optimization. Computers and Structures 2012;112–113:283–294.

    Google Scholar 

  273. Hsiao YT, Chuang CL, Jiang JA, Chien CC. A novel optimization algorithm: space gravitational optimization. 2005 IEEE International Conference on Systems, Man and Cybernetics; 2005. p. 2323–2328.

  274. Tzanetos A, Dounias G. A new metaheuristic method for optimization: sonar inspired optimization. International conference on engineering applications of neural networks. Springer; 2017. p. 417–428.

  275. Cuevas E, Echavarría A, Ramíbrez-Ortegón MA. An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation. Applied Intelligence 2014; 40:256–272.

    Google Scholar 

  276. Tamura K, Yasuda K. Primary study of spiral dynamics inspired optimization. IEEJ Trans Electric Electron Eng 2011;6:98–100.

    Google Scholar 

  277. Jin GG, Tran TD. A nature-inspired evolutionary algorithm based on spiral movements. Proceedings of SICE annual conference 2010; 2010. p. 1643–1647.

  278. Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O. Novel type of phase transition in a system of self-driven particles. Phys Rev Lett 1995;75(6):1226–1229.

    MathSciNet  Google Scholar 

  279. Kaveh A, Ilchi Ghazaan M. Vibrating particles system algorithm for truss optimization with multiple natural frequency constraints. Acta Mechanica 2017;228(1):307–322.

    MathSciNet  Google Scholar 

  280. Dogan B, Ölmez T. A new metaheuristic for numerical function optimization: Vortex Search Algorithm. Info Sci 2015;293:125–145.

    Google Scholar 

  281. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M. Water cycle algorithm – A novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers and Structures 2012;110–111:151–166.

    Google Scholar 

  282. Kaveh A, Bakhshpoori T. Water Evaporation Optimization: a novel physically inspired optimization algorithm. Computers and Structures 2016;167:69–85.

    Google Scholar 

  283. Yang FC, Wang YP. Water flow-like algorithm for object grouping problems. Journal of the Chinese Institute of Industrial Engineers 2007;24(6):475–488.

    Google Scholar 

  284. Basu S, Chaudhuri C, Kundu M, Nasipuri M, Basu DK. Text line extraction from multi-skewed handwritten documents. Pattern Recogn 2007;40(6):1825–1839.

    MATH  Google Scholar 

  285. Tran TH, Ng KM. A water-flow algorithm for flexible flow shop scheduling with intermediate buffers. Journal of Scheduling 2011;14(5):483–500.

    MathSciNet  Google Scholar 

  286. Zheng YJ. Water wave optimization: a new nature-inspired metaheuristic. Comput Oper Res 2015;55:1–11.

    MathSciNet  MATH  Google Scholar 

  287. Irizarry R. A generalized framework for solving dynamic optimization problems using the artificial chemical process paradigm: applications to particulate processes and discrete dynamic systems. Chem Eng Sci 2005;60(21):5663–5681.

    Google Scholar 

  288. Alatas B. ACROA: Artificial Chemical Reaction Optimization Algorithm for global optimization. Expert Systems with Applications 2011;38:13170–13180.

    Google Scholar 

  289. Melin P, Astudillo L, Castillo O, Valdez F, Garcia M. Optimal design of type-2 and type-1 fuzzy tracking controllers for autonomous mobile robots under perturbed torques using a new chemical optimization paradigm. Expert Systems with Applications 2013;40(8):3185–3195.

    Google Scholar 

  290. Lam AYS, Li VOK. Chemical-reaction-inspired metaheuristic for optimization. IEEE Trans Evol Comput 2010;14(3):381–399.

    Google Scholar 

  291. Javidy B, Hatamlou A, Mirjalili S. Ions motion algorithm for solving optimization problems. Applied Soft Computing 2015;32:72–79.

    Google Scholar 

  292. Chuang CL, Jiang JA. Integrated radiation optimization: inspired by the gravitational radiation in the curvature of space-time. 2007 IEEE Congress on Evolutionary Computation; 2007 . p. 3157–3164.

  293. Moein S, Logeswaran R. KGMO: a swarm optimization algorithm based on the kinetic energy of gas molecules. Information Sciences 2014;275:127–144.

    MathSciNet  Google Scholar 

  294. Murase H. Finite element inverse analysis using a photosynthetic algorithm. Computers and Electronics in Agriculture 2000;29(1-2):115–123.

    Google Scholar 

  295. Subashini P, Dhivyaprabha TT, Krishnaveni M. Synergistic fibroblast optimization. Artificial Intelligence and Evolutionary Computations in Engineering Systems; 2017. p. 285–294.

  296. Kaveh A, algorithm Dadras A. A novel meta-heuristic optimization Thermal exchange optimization. Adv Eng Softw 2017;110:69–84.

    Google Scholar 

  297. Huan TT, Kulkarni AJ, Kanesan J, Huang CJ, Abraham A. Ideology algorithm: a socio-inspired optimization methodology. Neural Comput Appl 2017;28(1):845–876.

    Google Scholar 

  298. El-Abd M. Global-best brain storm optimization algorithm. Swarm and Evolutionary Computation 2017;37:27–44.

    Google Scholar 

  299. Bodaghi M, Samieefar K. Meta-heuristic bus transportation algorithm. Iran JComput Sci 2019;2(1):23–32.

    Google Scholar 

  300. Zhang Q, Wang R, Yang J, Ding K, Li Y, Hu J. Collective decision optimization algorithm: a new heuristic optimization method. Neurocomputing. 2017;221:123–137.

    Google Scholar 

  301. Li M, Zhao H, Weng X, Han T. Cognitive behavior optimization algorithm for solving optimization problems. Applied Soft Computing 2016;39:199–222.

    Google Scholar 

  302. Sharafi Y, Khanesar MA, Teshnehlab M. COOA: competitive optimization algorithm. Swarm and Evolutionary Computation 2016;30:39–63.

    Google Scholar 

  303. Jin X, Reynolds RG. Using knowledge-based evolutionary computation to solve nonlinear constraint optimization problems: a cultural algorithm approach. Proceedings of the 1999 Congress on Evolutionary Computation-CEC99; 1999. p. 1672–1678.

  304. Biyanto TR, Fibrianto HY, Nugroho G, Hatta AM, Listijorini E, Budiati T, et al. Duelist algorithm: an algorithm inspired by how duelist improve their capabilities in a duel. International conference on swarm intelligence. Springer; 2016. p. 39–47.

  305. Fadakar E, Ebrahimi M. A new metaheuristic football game inspired algorithm. 2016 1st Conference on Swarm Intelligence and Evolutionary Computation (CSIEC); 2016 . p. 6–11.

  306. Razmjooy N, Khalilpour M, Ramezan M. A new meta-heuristic optimization algorithm inspired by FIFA World Cup competitions: theory and its application in PID designing for AVR system. Journal of Control, Automation and Electrical Systems 2016;27(4):419–440.

    Google Scholar 

  307. Osaba E, Diaz F, Onieva E. Golden ball: a novel meta-heuristic to solve combinatorial optimization problems based on soccer concepts. Applied Intelligence 2014;41(1):145–166.

    Google Scholar 

  308. Eita MA, Fahmy MM. Group counseling optimization. Applied Soft Computing 2010;22: 585–604.

    Google Scholar 

  309. Daskin A, Kais S. Group leaders optimization algorithm. Molecular Physics 2011;109(5): 761–772.

    Google Scholar 

  310. Lenord Melvix JSM. Greedy Politics Optimization: metaheuristic inspired by political strategies adopted during state assembly elections. 2014 IEEE International Advance Computing Conference (IACC); 2014. p. 1157–1162.

  311. Montiel O, Castillo O, Melin P, Rodríguez Díaz A, Sepúlveda R. Human evolutionary model: a new approach to optimization. Information Sciences 2007;177(10):2075–2098.

    Google Scholar 

  312. Thammano A, Moolwong J. A new computational intelligence technique based on human group formation. Expert Systems with Applications 2010;37(2):1628–1634.

    Google Scholar 

  313. Zhang LM, Dahlmann C, Zhang Y. Human-inspired algorithms for continuous function optimization. 2009 IEEE International conference on intelligent computing and intelligent systems; 2009. p. 318–321.

  314. Gonzalez-Fernandez Y, Chen S. Leaders and followers - A new metaheuristic to avoid the bias of accumulated information. 2015 IEEE Congress on Evolutionary Computation (CEC); 2015. p. 776–783.

  315. Hu TC, Kahng AB, Tsao CWA. Old Bachelor Acceptance: a new class of non-monotone threshold accepting methods. ORSA Journal on Computing 1995;7(4):417–425.

    MATH  Google Scholar 

  316. Zhang X, Chen W, Dai C. Application of oriented search algorithm in reactive power optimization of power system. 2008 Third International conference on electric utility deregulation and restructuring and power technologies; 2008 . p. 2856–2861.

  317. Borji A, Hamide M. A new approach to global optimization motivated by parliamentary political. International Journal of Innovative Computing, Information and Control 2009;5:1643–1653.

    Google Scholar 

  318. Zhang J, Xiao M, Gao L, Pan Q. Queuing search algorithm: a novel metaheuristic algorithm for solving engineering optimization problems; 2018. p. 464 – 490.

  319. Ray T, Liew KM. Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Transactions On Evolutionary Computation 2003;7(4):386–396.

    Google Scholar 

  320. Wei Z, Cui Z, Zeng J. Social cognitive optimization algorithm with reactive power optimization of power system. 2010 International conference on computational aspects of social networks; 2010. p. 11–14.

  321. Xu Y, Cui Z, Zeng J. Social emotional optimization algorithm for nonlinear constrained optimization problems. Swarm, Evolutionary, and Memetic Computing. In: Panigrahi BK, Das S, Suganthan P N, and Dash S S, editors; 2010 . p. 583–590.

  322. Weibo W, Quanyuan F, Yongkang Z. A novel particle swarm optimization algorithm with stochastic focusing search for real-parameter optimization. 2008 11th IEEE Singapore international conference on communication systems; 2008 . p. 583–587.

  323. Dwi Purnomo H. Soccer Game Optimization: fundamental concept. Jurnal Sistem Komputer 2012;4 (1):25–36.

    Google Scholar 

  324. Rao RV, Savsani VJ, Vakharia DP. Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Computer-Aided Design 2011;43(3):303–315.

    Google Scholar 

  325. Kaveh A, Zolghadr A. A novel meta-heuristic algorithm: Tug Of War Optimization. Int J Optim Civil Eng 2014;6(4):469–492.

    Google Scholar 

  326. Ardjmand E, Amin-Naseri MR. Unconscious search - A new structured search algorithm for solving continuous engineering optimization problems based on the theory of psychoanalysis. Advances in swarm intelligence; 2012. p. 233–242.

  327. Moghdani R, Salimifard K. Volleyball premier league algorithm. Applied Soft Computing 2018; 64:161–185.

    Google Scholar 

  328. Yampolskiy RV, EL-Barkouky A. Wisdom of artificial crowds algorithm for solving NP-hard problems. Int J Bio-Inspired Comput 2011;3(6):358–369.

    Google Scholar 

  329. Ghaemi M, Feizi-Derakhshi MR. Forest optimization algorithm. Expert Systems with Applications 2014;41(15):6676–6687.

    Google Scholar 

  330. Zhao Z, Cui Z, Zeng J, Yue X. Artificial plant optimization algorithm for constrained optimization problems. 2011 Second international conference on innovations in bio-inspired computing and applications; 2011. p. 120–123.

  331. Yang XS. Flower pollination algorithm for global optimization. Unconventional computation and natural computation, proceeding; 2012. p. 240–249.

  332. Moez H, Kaveh A, Taghizadieh N. Natural Forest Regeneration Algorithm: a new meta-heuristic. Iranian Journal of Science and Technology. Transactions of Civil Engineering 2016 Dec;40(4):311–326.

    Google Scholar 

  333. Sulaiman M, Salhi A, Selamoglu BI, Kirikchi OB. A plant propagation algorithm for constrained engineering optimisation problems. Mathematical Problems in Engineering 2014;2014:1–10.

    Google Scholar 

  334. Premaratne U, Samarabandu J, Sidhu T. A new biologically inspired optimization algorithm. 2009 International Conference on Industrial and Information Systems (ICIIS); 2009 . p. 279–284.

  335. Merrikh-Bayat F. The runner-root algorithm: a metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature. Applied Soft Computing 2015;33:292–303.

    Google Scholar 

  336. Karci A. Theory of saplings growing up algorithm. Adaptive and natural computing algorithms; 2007. p. 450–460.

  337. Cheraghalipour A, Hajiaghaei-Keshteli M, Paydar MM. Tree Growth Algorithm (TGA): a novel approach for solving optimization problems. Eng Appl Artif Intell 2018;72:393–414.

    Google Scholar 

  338. Punnathanam V, Kotecha P. Yin-Yang-pair Optimization: a novel lightweight optimization algorithm. Eng Appl Artif Intell 2016;54:62–79.

    Google Scholar 

  339. Gao-Wei Y, Zhanju H. A novel atmosphere clouds model optimization algorithm. 2012 International conference on computing, measurement, control and sensor network; 2012. p. 217–220.

  340. Civicioglu P. Artificial cooperative search algorithm for numerical optimization problems. Inf Sci 2012;229:58–76.

    Google Scholar 

  341. Wu G. Across neighborhood search for numerical optimization. Inf Sci 2016;329:597–618.

    Google Scholar 

  342. Del Acebo E, De La Rosa JL. Introducing bar systems: a class of swarm intelligence optimization algorithms. AISB 2008 Convention: Communication, Interaction and Social Intelligence - Proceedings of the AISB 2008 Symposium on swarm intelligence algorithms and applications; 2008. p. 18–23.

  343. Civicioglu P. Backtracking search optimization algorithm for numerical optimization problems. Applied Mathematics and Computation 2012;219(15):8121–8144.

    MathSciNet  MATH  Google Scholar 

  344. Zhu C, Ni J. Cloud model-based differential evolution algorithm for optimization problems. 2012 Sixth International conference on internet computing for science and engineering; 2012. p. 55–59.

  345. Li B, Jiang W. Optimizing complex functions by chaos search. Cybernetics and Systems 1998; 29(4):409–419.

    MATH  Google Scholar 

  346. Nunes de Castro L, Von Zuben FJ. The clonal selection algorithm with engineering applications. Workshop Proceedings of GECCO; 2000. p. 36–37.

  347. Civicioglu P. transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Computers and Geosciences 2012;46:229–247.

    Google Scholar 

  348. Ghorbani N, Babaei E. Exchange market algorithm. Applied Soft Computing 2014;19:177–187.

    Google Scholar 

  349. Boettcher S, Percus AG. Extremal Optimization: methods derived from co-evolution. Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation - Volume 1. GECCO’99; 1999. p. 825–832.

  350. Tan Y, Zhu Y. Fireworks algorithm for optimization. Advances in swarm intelligence. In: Tan Y, Shi Y, and Tan K C, editors; 2010. p. 355–364.

  351. Ahrari A, Atai AA. Grenade Explosion Method – A novel tool for optimization of multimodal functions. Applied Soft Computing 2010;10:1132–1140.

    Google Scholar 

  352. Tanyildizi E, Demir G. Golden sine algorithm: a novel math-inspired algorithm. Advances in Electrical and Computer Engineering 2017;17(2):71–79.

    Google Scholar 

  353. Hatamlou A. Heart: a novel optimization algorithm for cluster analysis. Progress in Artificial Intelligence 2014;2(2):167–173.

    Google Scholar 

  354. Gandomi AH. Interior search algorithm (ISA): a novel approach for global optimization. ISA Transactions 2014;53(4):1168–1183.

    Google Scholar 

  355. Hajiaghaei-Keshteli M, Aminnayeri M. Solving the integrated scheduling of production and rail transportation problem by Keshtel algorithm. Applied Soft Computing 2014;25:184–203.

    Google Scholar 

  356. De Melo VV. Kaizen programming. Proceedings of the 2014 Annual conference on genetic and evolutionary computation. GECCO ’14; 2014. p. 895–902.

  357. Nishida TY. . Membrane Algorithms: approximate algorithms for NP-complete optimization problems. Berlin: Springer; 2006. p. 303–314.

  358. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M. Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Applied Soft Computing 2013;13 (5):2592–2612.

    Google Scholar 

  359. Asil Gharebaghi S, Ardalan Asl M. New meta-heuristic optimization algorithm using neuronal communication. Iran University of Science & Technology 2017;7(3):413–431.

    Google Scholar 

  360. Chan CY, Xue F, Ip W, Cheung C. A hyper-heuristic inspired by pearl hunting. International conference on learning and intelligent optimization. Springer; 2012. p. 349–353.

  361. Savsani P, Savsani V. Passing vehicle search (PVS): a novel metaheuristic algorithm. Applied Mathematical Modelling 2016;40(5–6):3951–3978.

    MATH  Google Scholar 

  362. Felipe D, Goldbarg EFG, Goldbarg MC. Scientific algorithms for the car renter salesman problem. 2014 IEEE Congress on Evolutionary Computation (CEC); 2014. p. 873–879.

  363. Fathollahi-Fard AM, Hajiaghaei-Keshteli M. 2017. Social Engineering Optimization (SEO), A New Single-Solution Meta-heuristic Inspired by Social Engineering.

  364. Salimi H. Stochastic Fractal Search: A powerful metaheuristic algorithm. Knowledge-Based Systems 2015;75:1–18.

    Google Scholar 

  365. Gonçalves MS, Lopez RH, Fadel MLF. Search group algorithm: a new metaheuristic method for the optimization of truss structures. Computers and Structures 2015;153:165–184.

    Google Scholar 

  366. Hasançebi O, Azad SK. An efficient metaheuristic algorithm for engineering optimization: SOPT. Int J Optim Civil Eng 2012;2(4):479–487.

    Google Scholar 

  367. Du H, Wu X, Zhuang J. Small-world optimization algorithm for function optimization. Advances in Natural Computation; 2006. p. 264–273.

  368. Dueck G. New optimization heuristics; The great deluge algorithm and the record-to-record travel. J Comput Phys 1993;104(1):86–92.

    MathSciNet  MATH  Google Scholar 

  369. Bayraktar Z, Komurcu M, Werner DH. Wind Driven Optimization (WDO): a novel nature-inspired optimization algorithm and its application to electromagnetics. 2010 IEEE Antennas and propagation society international symposium; 2010. p. 1–4.

  370. Sörensen K. Metaheuristics, - the metaphor exposed. Int Trans Oper Res 2015;22:3–18.

    MathSciNet  MATH  Google Scholar 

  371. García-Martínez C, Gutiérrez P D, Molina D, Lozano M, Herrera F. Since CEC 2005 competition on real-parameter optimisation: a decade of research, progress and comparative analysis’s weakness. Soft Computing 2017;21(19):5573–5583.

    Google Scholar 

  372. Liao T, Molina D, Sttzle T. Performance evaluation of automatically tuned continuous optimizers on different benchmark sets. Applied Soft Computing 2015;27:490–503.

    Google Scholar 

  373. Bosman PAN, Gallagher M. The importance of implementation details and parameter settings in black-box optimization: a case study on Gaussian estimation-of-distribution algorithms and circles-in-a-square packing problems. Soft Computing 2018;22(4):1209–1223.

    Google Scholar 

  374. Biedrzycki R. 2019. On equivalence of algorithm’s implementations: the CMA-ES algorithm and its five implementations, pp 247–248.

  375. Liefooghe A, Jourdan L, Talbi EG. A software framework based on a conceptual unified model for evolutionary multiobjective optimization: ParadisEO-MOEO. European J Oper Res 2011;209(2):104–112.

    MathSciNet  Google Scholar 

  376. Durillo JJ, Nebro AJ. jMetal: a Java framework for multi-objective optimization. Adv Eng Softw 2011;42(10):760–771.

    Google Scholar 

  377. Vrbančič G, Brezočnik L, Mlakar U, Fister D, Fister Jr I. 2018. NiaPy: Python microframework for building nature-inspired algorithms. Journal of Open Source Software, pp 3.

  378. Benítez-Hidalgo A, Nebro AJ, García-Nieto J, Oregi I, Ser JD. jMetalPy: a Python framework for multi-objective optimization with metaheuristics. Swarm and Evolutionary Computation 2019;51: 100598.

    Google Scholar 

  379. Tian Y, Cheng R, Zhang X, Jin Y. PlatEMO: a MATLAB platform for evolutionary multi-objective optimization. IEEE Comput Intell Mag 2017;12(4):73–87.

    Google Scholar 

  380. Gupta A, Ong Y. 2018. Memetic Computation: the mainspring of knowledge transfer in a data-driven optimization era. Adaptation, Learning, and Optimization Series, Springer.

  381. Mafarja M, Qasem A, Heidari AA, Aljarah I, Faris H, Mirjalili S. 2019. Efficient hybrid nature-inspired binary optimizers for feature selection. Cognitive Computation, pp 1–26.

Download references

Funding

This work was supported by grants from the Spanish Ministry of Science and the European Fund (FEDER) under projects TIN2016-81113R, and TIN2017-89517-P. Javier Del Ser received support from the Basque Government through the ELKARTEK and EMAITEK funding programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Molina.

Ethics declarations

Conflict of Interest

AH is Editor-in-Chief, and FH is editorial board member of Cognitive Computation. They had no involvement in any aspect of the decision-making on this paper.

Additional information

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molina, D., Poyatos, J., Ser, J.D. et al. Comprehensive Taxonomies of Nature- and Bio-inspired Optimization: Inspiration Versus Algorithmic Behavior, Critical Analysis Recommendations. Cogn Comput 12, 897–939 (2020). https://doi.org/10.1007/s12559-020-09730-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-020-09730-8

Keywords

Navigation