Skip to main content
Log in

Bayesian Analysis of Composite Quantile Regression

  • Published:
Statistics in Biosciences Aims and scope Submit manuscript

Abstract

This paper introduces a Bayesian approach for composite quantile regression employing the skewed Laplace distribution for the error distribution. We use a two-level hierarchical Bayesian model for coefficient estimation and future selection which assumes a prior distribution that favors sparseness. An efficient Gibbs sampling algorithm is developed to update the unknown quantities from the posteriors. The proposed approach is illustrated via simulation studies and two real datasets. Results indicate that the proposed approach performs quite good in comparison to the other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alhamzawi R (2013) Brq:bayesian estimation and variable selection for quantile regression models

  2. Alhamzawi R (2015) Model selection in quantile regression models. J Appl Stat 42(2):445–458

    Article  MathSciNet  Google Scholar 

  3. Alhamzawi R (2016) Bayesian model selection in ordinal quantile regression. Comput Stat Data Anal 103:68–78

    Article  MathSciNet  Google Scholar 

  4. Alhamzawi R, Yu K (2014) Bayesian Lasso-mixed quantile regression. J Stat Comput Simul 84(4):868–880

    Article  MathSciNet  Google Scholar 

  5. Asirvatham J (2009) Examining diet quality and body mass index in rural areas using a quantile regression framework. Rev Reg Stud 39(2):149–169

    Google Scholar 

  6. Bae K, Mallick B (2004) Gene selection using a two-level hierarchical Bayesian model. Bioinformatics 20:3423–3430

    Article  Google Scholar 

  7. Bottai M, Frongillo EA, Sui X, O’Neill JR, McKeown RE, Burns TL, Liese AD, Blair SN, Pate RR (2014) Use of quantile regression to investigate the longitudinal association between physical activity and body mass index. Obesity 22(5):E149–E156

    Article  Google Scholar 

  8. Bradic J, Fan J, Wang W (2011) Penalized composite quasi-likelihood for ultrahigh dimensional variable selection. J R Stat Soc Ser B 73:325–349

    Article  MathSciNet  Google Scholar 

  9. Brownlee KA (1965) Statistical methodology in science and engineering, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  10. Burgette LF, Reiter JP (2012) Modeling adverse birth outcomes via confirmatory factor quantile regression. Biometrics 68:92–100

    Article  MathSciNet  MATH  Google Scholar 

  11. Cade BS, Barry NR (2003) A gentle introduction to quantile regression for ecologistis. Front Ecol Environ 1:412–420

    Article  Google Scholar 

  12. Chhikara R, Folks L (1989) The inverse gaussian distribution: theory, methodology, and applications. Marcel Dekker, New York

    MATH  Google Scholar 

  13. Davidova S, Kostov P (2013) A quantile regression analysis of the effect of farmers’ attitudes and perceptions on market participation. J Agric Econ 64:2013

    Google Scholar 

  14. Fan J, Li RZ (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96:1348–1360

    Article  MathSciNet  MATH  Google Scholar 

  15. Figueiredo M (2001) Adaptive sparseness using Jeffreys prior. Adv Neural Inform Process Syst 697–704

  16. Geraci M, Bottai M (2007) Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics 8:140–154

    Article  MATH  Google Scholar 

  17. Heinz G, Peterson LJ, Johnson RW, Kerk CJ (2003) Exploring relationships in body dimensions. J Stat Educ 11(2)

  18. Hu Y, Gramacy RB, Lian H (2013) Bayesian quantile regression for single-index models. Stat Comput 23(4):437–454

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang H, Chen Z (2015) Bayesian composite quantile regression. J Stat Comput Simul 85(18):3744–3754

    Article  MathSciNet  Google Scholar 

  20. Kai B, Li R, Zou H (2010) Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression. J R Stat Soc Ser B 72(1):49–69

    Article  MathSciNet  Google Scholar 

  21. Khare K, Hobert JP (2012) Geometric ergodicity of the Gibbs sampler for Bayesian quantile regression. J Multivar Anal 112:108–116

    Article  MathSciNet  MATH  Google Scholar 

  22. Kocherginsky M, He X, Mu Y (2005) Practical confidence intervals for regression quantiles. J Comput Graph Stat 14:41–55

    Article  MathSciNet  Google Scholar 

  23. Koenker R, Bassett GJ (1978) Regression quantiles. Econometrica 46:33–50

    Article  MathSciNet  MATH  Google Scholar 

  24. Koenker R, Geling O (2001) Reappraising medfly longevity: a quantile regression survival analysis. J Am Stat Assoc 96(454):458–468

    Article  MathSciNet  MATH  Google Scholar 

  25. Koenker R, Hallock K (2001) Quantile regression: an introduction. J Econ Perspect 15(4):43–56

    Article  Google Scholar 

  26. Koenker R, Machado JAF (1999) Goodness of fit and related inference processes for quantile regression. J Am Stat Assoc 94:1296–1310

    Article  MathSciNet  MATH  Google Scholar 

  27. Komunjer I (2005) Quasi-maximum likelihood estimation for conditional quantiles. J Econom 128:137–164

    Article  MathSciNet  MATH  Google Scholar 

  28. Kozumi H, Kobayashi G (2011) Gibbs sampling methods for Bayesian quantile regression. J Stat Comput Simul 81:1565–1578

    Article  MathSciNet  MATH  Google Scholar 

  29. Li Q, Xi R, Lin N (2010) Bayesian regularized quantile regression. Bayesian Anal 5:533–556

    Article  MathSciNet  MATH  Google Scholar 

  30. Lum K, Gelfand A (2012) Spatial quantile multiple regression using the asymmetric Laplace process. Bayesian Anal 7:235–258

    Article  MathSciNet  MATH  Google Scholar 

  31. Park T, Casella G (2008) The Bayesian lasso. J Am Stat Assoc 103:681–686

    Article  MathSciNet  MATH  Google Scholar 

  32. Reed C (2011) Bayesian parameter estimation and variable selection for quantile regression. School of Information Systems, Computing and Mathematics. Brunel University, Technical report, Department of Mathematics

  33. Reed C, Dunson D, Yu K (2009) Bayesian variable selection in quantile regression. Department of Mathematical Sciences, Brunei University, Relatorio Técnico

  34. Reich BJ (2012) Spatiotemporal quantile regression for detecting distributional changes in environmental processes. J R Stat Soc Ser C 61(4):535–553

    Article  MathSciNet  Google Scholar 

  35. Reich BJ, Fuentes M, Dunson DB (2011) Bayesian spatial quantile regression. J Am Stat Assoc 106(493):6

    Article  MathSciNet  MATH  Google Scholar 

  36. Sun W, Ibrahim JG, Zou F (2010) Genomewide multiple-loci mapping in experimental crosses by iterative adaptive penalized regression. Genetics 185:349–359

    Article  Google Scholar 

  37. Wei Y, He X et al (2006) Conditional growth charts. Ann Stat 34(5):2069–2097

    Article  MathSciNet  MATH  Google Scholar 

  38. Yi N, Xu S (2008) Bayesian Lasso for quantitative trait loci mapping. Genetics 179:1045–1055

    Article  Google Scholar 

  39. Yu K, Moyeed RA (2001) Bayesian quantile regression. Stat Probab Lett 54:437–447

    Article  MathSciNet  MATH  Google Scholar 

  40. Yu K, Stander J (2007) Bayesian analysis of a Tobit quantile regression model. J Econom 137:260–276

    Article  MathSciNet  MATH  Google Scholar 

  41. Yuan Y, Yin G (2010) Bayesian quantile regression for longitudinal studies with nonignorable missing data. Biometrics 66:105–114

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhao Z, Xiao Z (2011) Efficient regressions via optimally combining quantile information. Econom Theory 1–43

  43. Zou H, Yuan M (2008) Composite quantile regression and the oracle model selection theory. Ann Stat 36:1108–1126

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahim Alhamzawi.

Appendix

Appendix

A description of the Body dimensions dataset can be found on the Brq package: http://cran.r-project.org/web/packages/Brq/index.html. Here is a table listing briefly the dataset frame for 507 observations on 25 regressors including the outcome (weight).

y

Weight (kg)

\(x_1\)

Gender

\(x_2\)

Age (years)

\(x_3\)

Height (cm)

\(x_4\)

Biacromial diameter (cm)

\(x_5\)

Biiliac diameter, or “pelvic breadth” (cm)

\(x_6\)

Bitrochanteric diameter (cm)

\(x_7\)

Chest depth (cm)

\(x_8\)

Chest diameter (cm)

\(x_9\)

Elbow diameter (cm)

\(x_{10}\)

Wrist diameter (cm)

\(x_{11}\)

Knee diameter (cm)

\(x_{12}\)

Ankle diameter (cm)

\(x_{13}\)

Shoulder girth (cm)

\(x_{14}\)

Chest girth (cm)

\(x_{15}\)

Waist girth (cm)

\(x_{16}\)

Navel (or ”Abdominal”) girth

\(x_{17}\)

Hip girth (cm)

\(x_{18}\)

Thigh girth (cm)

\(x_{19}\)

Bicep girth (cm)

\(x_{20}\)

Forearm girth (cm)

\(x_{21}\)

Knee girth (cm)

\(x_{22}\)

Calf maximum girth (cm)

\(x_{23}\)

Ankle minimum girth (cm)

\(x_{24}\)

Wrist minimum girth (cm)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhamzawi, R. Bayesian Analysis of Composite Quantile Regression. Stat Biosci 8, 358–373 (2016). https://doi.org/10.1007/s12561-016-9158-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12561-016-9158-8

Keywords

Navigation