Skip to main content

Advertisement

Log in

Thermoelectric materials for space applications

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

Solid-state energy conversion through thermoelectric effects remains the technology of choice for space applications for which, their low energy conversion efficiency is largely outweighed by the reliability and technical requirements of the mission. Radioisotope thermoelectric generators (RTGs) enable the direct conversion of the heat released by nuclear fuel into the electrical power required to energize the scientific instruments. The optimization of the conversion efficiency is intimately connected to the performances of the thermoelectric materials integrated which are governed by the transport properties of these materials. Recent advances in the design of highly efficient thermoelectric materials raise interesting prospects to further enhance the performances of RTGs for future exploratory missions in the Solar system. Here, we briefly review the knowledge acquired over the last years on several families of thermoelectric materials, the performances of which are close or even higher than those conventionally used in RTGs to date. Issues that remain to be solved are further discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Code availability

Not applicable.

References

  1. Rowe, D. M. in Thermoelectrics and its Energy Harvesting: Modules, Systems, and Applications in Thermoelectrics, ed. D. M. Rowe, CRC Press, Boca Raton, 2012.

  2. Snyder, G.J., Toberer, E.S.: Complex thermoelectric materials. Nature Mater. 7, 105–114 (2008)

    Article  Google Scholar 

  3. Bell, L.E.: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008)

    Article  Google Scholar 

  4. Bauer, S.: Flexible electronics. Nat. Mater. 12, 871–872 (2013)

    Article  Google Scholar 

  5. Xu, Q., Qu, S., Ming, C., Qiu, P., Yao, Q., Zhu, C., Wei, T.-R., He, J., Shi, X., Chen, L.: Conformal organic–inorganic semiconductor composites for flexible thermoelectrics. Energy Environ. Sci. 13, 511–518 (2020)

    Article  Google Scholar 

  6. Qi, Y., McAlpine, M.C.: Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ. Sci. 3, 1275–1285 (2010)

    Article  Google Scholar 

  7. Wan, C., Gu, X., Dang, F., Itoh, T., Wang, Y., Sasaki, H., Kondo, M., Koga, K., Yabuki, K., Snyder, G.J., Yang, R., Koumoto, K.: Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 14, 622–627 (2015)

    Article  Google Scholar 

  8. El Oualid, S., Kosior, F., Dauscher, A., Candolfi, C., Span, G., Mehmedovic, E., Paris, J., Lenoir, B.: Innovative design of bismuth-telluride-based thermoelectric micro-generators with high output power. Energy Environ. Sci. 13, 3579–3591 (2020)

    Article  Google Scholar 

  9. Ambrosi, R.M., Williams, H., Watkinson, E.J., Barco, A., Mesalam, R., Crawford, T., Bicknell, C., Samara-Ratna, P., Vernon, D., Bannister, N., Ross, D., Sykes, J., Perkinson, M.-C., Brugess, C., Stroud, C., Gibson, S., Godfrey, A., Slater, R.G., Reece, M.J., Chen, K., Simson, K., Tuley, R., Sarsfield, M., Tinsley, T.P., Stephenson, K., Freis, D., Vigier, J.-F., Konings, R.J.M., Fongarland, C., Libessart, M., Merrifield, J., Kramer, D.P., Byrne, J., Foxcroft, B.: European radioisotope thermoelectric generators (RTGs) and radioisotope heater units (RHUs) for space science and exploration. Space Sci. Rev. 215 (2019). https://doi.org/10.1007/s11214-019-0623-9

    Article  Google Scholar 

  10. Scherrer, S., Vikhor, L., Lenoir, B., Dauscher, A., Poinas, P.: Solar thermoelectric generators based on skutterudites. J. Power Sources 115, 141–148 (2003)

    Article  Google Scholar 

  11. Lenoir, B., Dauscher, A., Poinas, P., Scherrer, S., Vikhor, L.: Electrical performance of skutterudites solar thermoelectric generators. Appl. Therm. Eng. 23, 1407–1415 (2003)

    Article  Google Scholar 

  12. Jaziri, N., Boughamoura, A., Müller, J., Mezghani, B., Tounsi, F., Ismail, M.: A comprehensive review of thermoelectric generators: technologies and common applications. Energy Rep. 6, 264–287 (2019).

    Article  Google Scholar 

  13. Hammel, T., Bennett, R., Otting, W., Fanale, S., Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) and performance prediction model. In: 7th international energy conversion engineering conference, Denver, Colorado (2009)

  14. Yu, J., Xing, Y., Hu, C., Huang, Z., Qiu, Q., Wang, C., Xia, K., Wang, Z., Bai, S., Zhao, X., Chen, L., Zhu, T.: Half-Heusler thermoelectric module with high conversion efficiency and high power density. Adv. Energy Mater. 10, 2000888 (2020)

    Article  Google Scholar 

  15. Muto, A., Yiang, J., Poudel, B., Ren, Z., Chen, G.: Skutterudite Unicouple characterization for energy harvesting applications. Adv. Energy Mater. 3, 245–251 (2013)

    Article  Google Scholar 

  16. Hong, M., Zheng, K., Lyv, W., Li, M., Qu, X., Sun, Q., Xu, S., Zou, J., Chen, Z.-G.: Computer-aided design of high-efficiency GeTe-based thermoelectric devices. Energy Environ. Sci. 13, 1856–1864 (2020)

    Article  Google Scholar 

  17. Zhu, T., Liu, Y., Fu, C., Heremans, J.P., Snyder, G.J., Zhao, X.: Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater. 29, 1605884 (2017)

    Article  Google Scholar 

  18. Pei, Y., LaLonde, A., Wang, H., Chen, L., Snyder, G.J.: Convergence of Electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011)

    Article  Google Scholar 

  19. Zhang, J., Liu, R., Cheng, N., Zhang, Y., Yang, J., Uher, C., Shi, X., Chen, L., Zhang, W.: High-performance pseudocubic thermoelectric materials from non-cubic chalcopyrite compounds. Adv. Mater. 26, 3848–3853 (2014)

    Article  Google Scholar 

  20. Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., Snyder, G.J.: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–557 (2008)

    Article  Google Scholar 

  21. Heremans, J.P., Wiendlocha, B., Chamoire, A.M.: Resonant levels in bulk thermoelectric semiconductors. Energy Environ. Sci. 5, 5510–5530 (2012)

    Article  Google Scholar 

  22. Jaworski, C.M., Kulbachinskii, V., Heremans, J.P.: Resonant level formed by tin in Bi2Te3 and the enhancement of room-temperature thermoelectric power. Phys. Rev. B 80, 233201 (2009)

    Article  Google Scholar 

  23. Wiendlocha, B., Vaney, J.-B., Candolfi, C., Dauscher, A., Lenoir, B., Tobola, J.: An Sn-induced resonant level in β-As2Te3. Phys. Chem. Chem. Phys. 20, 12948–12957 (2018)

    Article  Google Scholar 

  24. Misra, S., Wiendlocha, B., Tobola, J., Fesquet, F., Dauscher, A., Lenoir, B., Candolfi, C.: Band structure engineering in Sn1.03Te through an In-induced resonant level. J. Mater. Chem. C 8, 977–988 (2020)

    Article  Google Scholar 

  25. Kaidanov, V.I., Ravich, Y.I.: Deep and resonance states in AIV BVI semiconductors. Sov. Phys. Usp. 28, 31 (1985)

    Article  Google Scholar 

  26. Wiendlocha, B.: Thermopower of thermoelectric materials with resonant levels: PbTe: Tl versus PbTe: Na and Cu1−xNix. Phys. Rev. B 97, 205203 (2018)

    Article  Google Scholar 

  27. Wang, H., LaLonde, A., Pei, Y., Snyder, G.J.: The criteria for beneficial disorder in thermoelectric solid solutions. Adv. Funct. Mater. 23, 1586–1596 (2013)

    Article  Google Scholar 

  28. Sales, B.C., Mandrus, D., Williams, R.K.: Filled Skutterudite antimonides: a new class of thermoelectric materials. Science 272, 1325–1328 (1996)

    Article  Google Scholar 

  29. Rogl, G., Rogl, P.: Skutterudites, a most promising group of thermoelectric materials. Curr. Opin. Green Sustain. Chem. 4, 50–57 (2017)

    Article  Google Scholar 

  30. Uher, C.: Thermoelectrics and its energy harvesting, chap 10. CRC Press, Boca Raton (2012)

    Google Scholar 

  31. Leszczynski, J., Da Ros, V., Lenoir, B., Dauscher, A., Candolfi, C., Masschelein, P., Hejtmanek, J., Kutorasinski, K., Tobola, J., Smith, R.I., Stiewe, C., Müller, E.: Electronic band structure, magnetic, transport and thermodynamic properties of In-filled skutterudites InxCo4Sb12. J. Phys. D Appl. Phys. 46, 495106 (2013)

    Article  Google Scholar 

  32. Nolas, G.S.: The physics and chemistry of inorganic clathrates. Springer, New York (2014)

    Book  Google Scholar 

  33. Dolyniuk, J.-A., Owens-Baird, B., Wang, J., Zaikina, J.V., Kovnir, K.: Clathrate thermoelectrics. Mater. Sci. Eng. R. 108, 1–46 (2016)

    Article  Google Scholar 

  34. Christensen, M., Johnsen, S., Iversen, B.B.: Thermoelectric clathrates of type I. Dalton Trans. 39, 978–992 (2010)

    Article  Google Scholar 

  35. Nolas, G.S., Cohn, J.L., Slack, G.A., Schujman, S.B.: Semiconducting Ge clathrates: promising candidates for thermoelectric applications. Appl. Phys. Lett. 73, 178 (1998)

    Article  Google Scholar 

  36. Suekuni, K., Avila, M.A., Umeo, K., Takabatake, T.: Cage-size control of guest vibration and thermal conductivity in Sr8Ga16Si30−xGex. Phys. Rev. B 75, 195210 (2007)

    Article  Google Scholar 

  37. Lory, P.F., Pailhès, S., Giordano, V.M., Euchner, H., Nguyen, N.D., Ramlau, R., Borrmann, H., Schmidt, M., Baitinger, M., Ikeda, M., Tomes, P., Mihalkovic, M., Allio, C., Johnson, M.R., Schober, H., Sidis, Y., Bourdarot, F., Regnault, L.P., Ollivier, J., Paschen, S., Grin, Y., de Boissieu, M.: Direct measurement of individual phonon lifetimes in the clathrate compound Ba7.81Ge40.67Au5.33. Nat Commun 8, 491 (2017)

    Article  Google Scholar 

  38. Aydemir, U., Candolfi, C., Borrmann, H., Baitinger, M., Ormeci, A., Carrillo-Cabrera, W., Chubilleau, C., Lenoir, B., Dauscher, A., Oeschler, N., Steglich, F., Grin, Yu.: Crystal structure and transport properties of Ba8Ge433. Dalton Trans. 39, 1078–1088 (2010)

    Article  Google Scholar 

  39. Baitinger, M., Böhme, B., Ormeci, A., Grin, Yu. Solid state chemistry of clathrate phases: Crystal structure, chemical bonding and preparation routes. In :The physics and chemistry of inorganic Clathrates, Springer, New York, pp. 35–64 (2014)

  40. Tan, G., Zhao, L.-D., Kanatzidis, M.G.: Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 116, 12123–12149 (2016)

    Article  Google Scholar 

  41. Chen, G., Li, Y., Bick, M., Chen, J.: Smart textiles for electricity generation. Chem. Rev. 120, 3668–3720 (2019).

    Article  Google Scholar 

  42. Shi, X.-L., Zou, J., Chen, Z.-G.: Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120, 7399–7515 (2020).

    Article  Google Scholar 

  43. Yu, Y., Cagnoni, M., Cojocaru-Mirédin, O., Wuttig, M.: Chalcogenide thermoelectrics empowered by an unconventional bonding mechanism. Adv. Funct. Mater. 30, 1904862 (2020)

    Article  Google Scholar 

  44. Wuttig, M., Deringer, V.L., Gonze, X., Bichara, C., Raty, J.-Y.: Incipient metals: Functional materials with a unique bonding mechanism. Adv. Mater. 30, 1803777 (2018)

    Article  Google Scholar 

  45. Witting, I.T., Chasapis, T.C., Ricci, F., Peters, M., Heinz, N.A., Hautier, G., Snyder, G.J.: The thermoelectric properties of bismuth telluride. Adv. Electron. Mater. 5, 1800904 (2019)

    Article  Google Scholar 

  46. Pei, Y., Wang, H., Snyder, G.J.: Band engineering of thermoelectric materials. Adv. Mater. 24, 6125–6135 (2012)

    Article  Google Scholar 

  47. Fleurial, J.-P., Vandersande, J.: Progress in the optimization of n-type and p-type SiGe thermoelectric materials. AIP Conf. Proc. 271, 759–764 (1993)

    Article  Google Scholar 

  48. Li, C.W., Hellman, O., Ma, J., May, A.F., Cao, H.B., Chen, X., Christianson, A.D., Ehlers, G., Singh, D.J., Sales, B.C., Delaire, O.: Phonon self-energy and origin of anomalous neutron scattering spectra in SnTe and PbTe thermoelectrics. Phys. Rev. Lett. 112, 175501 (2014)

    Article  Google Scholar 

  49. Delaire, O., Ma, J., Marty, K., May, A.F., McGuire, M.A., Du, M.-H., Singh, D.J., Podlesnyak, A., Ehlers, G., Lumsden, M.D., Sales, B.C.: Giant anharmonic phonon scattering in PbTe. Nat. Mater. 10, 614–619 (2011)

    Article  Google Scholar 

  50. Lenoir, B., Scherrer, H., Caillat, T. An overview of recent developments of BiSb alloys in semiconductors and semimetals. In: Tritt, T. M. (ed.) Recent trends in thermoelectric materials research, chap. 4, vol. 69, p. 101–137. Academic Press, New York (2001)

  51. Kim, S.W., Cho, M.K., Mishima, Y., Choi, D.C.: High temperature thermoelectric properties of p- and n-type β-FeSi2 with some dopants. Intermetallics 11, 399–405 (2003)

    Article  Google Scholar 

  52. Nishida, I.: Study of semiconductor-to-metal transition in Mn-doped FeSi2. Phys. Rev. B 7, 2710–2713 (1973)

    Article  Google Scholar 

  53. Biswas, K., He, J., Blum, I.D., Wu, C.-I., Hogan, T.P., Seidman, D.N., Dravid, V.P., Kanatzidis, M.G.: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012)

    Article  Google Scholar 

  54. Brown, S.R., Kauzlarich, S.M., Gascoin, F., Snyder, G.J.: Yb14MnSb11: new high efficiency thermoelectric material for power generation. Chem. Mater. 18, 1873–1877 (2006)

    Article  Google Scholar 

  55. May, A.F., Fleurial, J.-P., Snyder, G.J.: Thermoelectric performance of lanthanum telluride produced via mechanical alloying. Phys. Rev. B 78, 125205 (2008)

    Article  Google Scholar 

  56. Zhao, L.-D., Lo, S.-H., Zhang, Y., Sun, H., Tan, G., Uher, C., Wolverton, C., Dravid, V.P., Kanatzidis, M.G.: Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–378 (2014)

    Article  Google Scholar 

  57. Chang, C., Wu, M., He, D., Pei, Y., Wu, C.-F., Wu, X., Yu, H., Zhu, F., Wang, K., Chen, Y., Huang, L., Li, J.-F., He, J., Zhao, L.-D.: 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 360, 778–783 (2018)

    Article  Google Scholar 

  58. Zaitsev, V.K., Fedorov, M.I., Gurieva, E.A., Eremin, I.S., Konstantinov, P.P., Samunin, AYu., Vedernikov, M.V.: Highly effective Mg2Si1−xSnx thermoelectrics. Phys. Rev. B 74, 045207 (2006)

    Article  Google Scholar 

  59. Zeier, W.G., Schmitt, J., Hautier, G., Aydemir, U., Gibbs, Z.M., Felser, C., Snyder, G.J.: Engineering half-Heusler thermoelectric materials using Zintl chemistry. Nat. Rev. Mater. 1, 16032 (2016)

    Article  Google Scholar 

  60. Chung, D.-Y., Hogan, T., Brazis, P., Rocci-Lane, M., Kannewurf, C., Bastea, M., Uher, C., Kanatzidis, M.G.: CsBi4Te6: a high-performance thermoelectric material for low-temperature applications. Science 287, 1024–1027 (2000)

    Article  Google Scholar 

  61. Zhang, B., Sun, J., Katz, H.E., Fang, F., Opila, R.L.: Promising Thermoelectric properties of commercial PEDOT:PSS materials and their Bi2Te3 powder composites. ACS Appl. Mater. Interfaces 2, 3170–3178 (2010)

    Article  Google Scholar 

  62. Zou, T., Xie, W., Feng, J., Qin, X., Weidenkaff, A.: Recent developments in β-Zn4Sb3 based thermoelectric compounds. J. Nanomater. (2015). https://doi.org/10.1155/2015/642909

    Article  Google Scholar 

  63. Zhao, L.-D., He, J., Berardan, D., Lin, Y., Li, J.-F., Nan, C.-W., Dragoe, N.: BiCuSeO oxyselenides: new promising thermoelectric materials. Energy Environ. Sci. 7, 2900–2924 (2014)

    Article  Google Scholar 

  64. Fujita, K., Mochida, T., Nakamura, K.: Jpn. J. Appl. Phys. 40, 4644–4647 (2001)

    Article  Google Scholar 

  65. Candolfi, C., Ibrahim, D., Vaney, J.-B., Sassi, S., Masschelein, P., Dauscher, A., Lenoir, B.: SnSe: breakthrough or not breakthrough? In: Skipidarov, S., Nikitin, M. (eds.) Novel thermoelectric materials and device design, pp. 23–46. Springer, New York (2019)

    Chapter  Google Scholar 

  66. Ibrahim, D., Vaney, J.-B., Sassi, S., Candolfi, C., Ohorodniichuk, V., Levinsky, P., Semprimoschnig, C., Dauscher, A., Lenoir, B.: Reinvestigation of the thermal properties of single-crystalline SnSe. Appl. Phys. Lett. 110, 032103 (2017)

    Article  Google Scholar 

  67. Sassi, S., Candolfi, C., Vaney, J.-B., Ohorodniichuk, V., Masschelein, P., Dauscher, A., Lenoir, B.: Assessment of the thermoelectric performance of polycrystalline p-type SnSe. Appl. Phys. Lett. 104, 212105 (2014)

    Article  Google Scholar 

  68. Chen, C.-L., Wang, H., Chen, Y.-Y., Day, T., Snyder, G.J.: Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J. Mater. Chem. A 2, 11171–11176 (2014)

    Article  Google Scholar 

  69. Brebrick, R.F., Strauss, A.J.: Anomalous thermoelectric power as evidence for two-valence bands in SnTe. Phys. Rev. 131, 104–110 (1963)

    Article  Google Scholar 

  70. Brebrick, R.F.: Deviations from stoichiometry and electrical properties in SnTe. J. Phys. Chem. Solids 24, 27 (1963)

    Article  Google Scholar 

  71. Tan, G., Zhao, L.-D., Shi, F., Doak, J.W., Lo, S.-H., Sun, H., Wang, P., Wolverton, C., Dravid, V.P., Uher, C., Kanatzidis, M.G.: High thermoelectric performance of p-Type SnTe via a synergistic band engineering and nanostructuring approach. J. Am. Chem. Soc. 136, 7006 (2014)

    Article  Google Scholar 

  72. Tan, G., Shi, F., Doak, J.W., Sun, H., Zhao, L.-D., Wang, P., Uher, C., Wolverton, C., Dravid, V.P., Kanatzidis, M.G.: Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe. Energy Environ. Sci. 8, 267 (2015)

    Article  Google Scholar 

  73. Banik, A., Shenoy, U.S., Anand, S., Waghmare, U.W., Biswas, K.: Mg Alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties. Chem. Mater. 27, 581 (2015)

    Article  Google Scholar 

  74. Al Rahal Al Orabi, R., Hwang, J., Lin, C.-C., Gautier, R., Fontaine, B., Kim, W., Rhyee, J.-S., Wee, D., Fornari, M.: Ultralow lattice thermal conductivity and enhanced thermoelectric performance in SnTe: Ga materials. Chem. Mater. 29, 612 (2017)

    Article  Google Scholar 

  75. Littlewood, P.B., Mihaila, B., Schulze, R.K., Safarik, D.J., Gubernatis, J.E., Bostwick, A., Rotenberg, E., Opeil, C.P., Durakiewicz, T., Smith, J.L., Lashley, J.C.: Phys. Rev. Lett. 105, 086404 (2010)

    Article  Google Scholar 

  76. Ibrahim, D., Candolfi, C., Migot, S., Ghanbaja, J., Dauscher, A., Le Caër, G., Malaman, B., Semprimoschnig, C., Lenoir, B.: Comprehensive study of the low-temperature transport properties of polycrystalline Sn1+xTe (x = 0 and 0.03). Phys. Rev. Mater. 3, 085404 (2019)

    Article  Google Scholar 

  77. Ibrahim, D., Ohorodniichuk, V., Candolfi, C., Semprimoschnig, C., Dauscher, A., Lenoir, B.: Improved thermoelectric properties in melt-spun SnTe. ACS Omega 2, 7106 (2017)

    Article  Google Scholar 

  78. Ibrahim, D., Misra, S., Migot, S., Ghanbaja, J., Dauscher, A., Malaman, B., Semprimoschnig, C., Candolfi, C., Lenoir, B.: Transport properties of polycrystalline SnTe prepared by saturation annealing. RSC Adv. 10, 5996–6005 (2020)

    Article  Google Scholar 

  79. Wei, T.-R., Tan, G., Zhang, X., Wu, C.-F., Li, J.-F., Dravid, V.P., Snyder, G.J., Kanatzidis, M.G.: Distinct impact of alkali-ion doping on electrical transport properties of thermoelectric p-type polycrystalline SnSe. J. Am. Chem. Soc. 138, 8875–8882 (2016)

    Article  Google Scholar 

  80. Zhang, L., Wang, J., Sun, Q., Qin, P., Cheng, Z., Ge, Z., Li, Z., Dou, S.: Three-Stage inter-orthorhombic evolution and high thermoelectric performance in Ag-doped nanolaminar SnSe polycrystals. Adv. Energy Mater. 7, 1700573 (2017)

    Article  Google Scholar 

  81. Chang, C., Tan, Q., Pei, Y., Xiao, Y., Zhang, X., Chen, Y.-X., Zheng, L., Gong, S., Li, J.-F., He, J., Zhao, L.-D.: Raising thermoelectric performance of n-type SnSe via Br doping and Pb alloying. RSC Adv. 6, 98216 (2016)

    Article  Google Scholar 

  82. Pletikosić, I., von Rohr, F., Pervan, P., Das, P.K., Vobornik, I., Cava, R.J., Valla, T.: Band structure of the IV–VI black phosphorus analog and thermoelectric SnSe. Phys. Rev. Lett. 120, 156403 (2018)

    Article  Google Scholar 

  83. Wang, Z., Fan, C., Shen, Z., Hua, C., Hu, Y., Sheng, F., Lu, Y., Fang, H., Qiu, Z., Lu, J., Liu, Z., Liu, W., Huang, Y., Xu, Z.-A., Shen, D.W., Zheng, Y.: Defects controlled hole doping and multivalley transport in SnSe single crystals. Nat. Commun. 9, 47 (2018)

    Article  Google Scholar 

  84. Kutorasinski, K., Wiendlocha, B., Kaprzyk, S., Tobola, J.: Electronic structure and thermoelectric properties of n- and p-type SnSe from first-principles calculations. Phys. Rev. B 91, 205201 (2015)

    Article  Google Scholar 

  85. Li, C.W., Hong, J., May, A.F., Bansal, D., Chi, S., Hong, T., Ehlers, G., Delaire, O.: Orbitally driven giant phonon anharmonicity in SnSe. Nat. Phys. 11, 1063 (2015)

    Article  Google Scholar 

  86. Bansal, D., Hong, J., Li, C.W., May, A.F., Porter, W., Hu, M.Y., Abernathy, D.L., Delaire, O.: Phonon anharmonicity and negative thermal expansion in SnSe. Phys. Rev. B 94, 054307 (2016)

    Article  Google Scholar 

  87. Rabii, S.: Energy-band structure and electronic properties of SnTe. Phys. Rev. 182, 821–828 (1969)

    Article  Google Scholar 

  88. Allgaier, R.S., Houston, B.: Weak-field magnetoresistance and the valence-band structure of SnTe. Phys. Rev. B 5, 2186–2197 (1972)

    Article  Google Scholar 

  89. Moshwan, R., Yang, L., Zou, J., Chen, Z.-G.: Eco-friendly SnTe thermoelectric materials: progress and future challenges. Adv. Funct. Mater. 27, 1703278 (2017)

    Article  Google Scholar 

  90. Li, W., Wu, Y., Lin, S., Chen, Z., Li, J., Zhang, X., Zheng, L., Pei, Y.: Advances in environment-friendly SnTe thermoelectrics. ACS Energy Lett. 2, 2349–2355 (2017)

    Article  Google Scholar 

  91. Zhang, Q., Liao, B., Lan, Y., Lukas, K., Liu, W., Esfarjani, K., Opeil, C., Broido, D., Chen, G., Ren, Z.: High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proc. Natl. Acad. Sci. USA 110, 13261–13266 (2013)

    Article  Google Scholar 

  92. Li, W., Zheng, L., Ge, B., Lin, S., Zhang, X., Chen, Z., Chang, Y., Pei, Y.: Promoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects. Adv. Mater. 29, 1605887 (2017)

    Article  Google Scholar 

  93. Bauer, E.D., Frederick, N.A., Ho, P.-C., Zapf, V.S., Maple, M.B.: Superconductivity and heavy fermion behavior in PrOs4Sb12. Phys. Rev. B 65, 100506(R) (2002)

    Article  Google Scholar 

  94. Ho, P.-C., Yanagisawa, T., Yuhasz, W.M., Dooraghi, A.A., Robinson, C.C., Butch, N.P., Baumbach, R.E., Maple, M.B.: Superconductivity, magnetic order, and quadrupolar order in the filled skutterudite system Pr1−xNdxOs4Sb12. Phys. Rev. B 83, 024511 (2011)

    Article  Google Scholar 

  95. Nicklas, M., Kirchner, S., Borth, R., Gumeniuk, R., Schnelle, W., Rosner, H., Borrmann, H., Leithe-Jasper, A., Grin, Yu., Steglich, F.: Charge-doping-driven evolution of magnetism and non-fermi-liquid behavior in the filled skutterudite CePt4Ge12−xSbx. Phys. Rev. Lett. 109, 236405 (2012)

    Article  Google Scholar 

  96. Mandrus, D., Migliori, A., Darling, T.W., Hundley, M.F., Peterson, E.J., Thompson, J.D.: Electronic transport in lightly doped CoSb3. Phys. Rev. B 52, 4926–4931 (1995)

    Article  Google Scholar 

  97. Singh, D.J., Pickett, W.E.: Skutterudite antimonides: quasilinear bands and unusual transport. Phys. Rev. B 50, 11235–11238 (1994)

    Article  Google Scholar 

  98. Dyck, J.S., Chen, W., Yang, J., Meisner, G.P., Uher, C.: Effect of Ni on the transport and magnetic properties of Co1-xNixSb3. Phys. Rev. B 65, 115204 (2002)

    Article  Google Scholar 

  99. Wan, S., Huang, X., Qiu, P., Shi, X., Chen, L.: Compound defects and thermoelectric properties of self-charge compensated skutterudites SeyCo4Sb12-xSex. ACS Appl. Mater. Interfaces 9, 22713–22724 (2017)

    Article  Google Scholar 

  100. Zhang, J., Xu, B., Wang, L.-M., Yu, D., Liu, Z., He, J., Tian, Y.: Great thermoelectric power factor enhancement of CoSb3 through the lightest metal element filling. Appl. Phys. Lett. 98, 072109 (2011)

    Article  Google Scholar 

  101. Pei, Y.Z., Yang, J., Chen, L.D., Zhang, W., Salvador, J.R., Yang, J.: Improving thermoelectric performance of caged compounds through light-element filling. Appl. Phys. Lett. 95, 042101 (2009)

    Article  Google Scholar 

  102. Pei, Y.Z., Chen, L.D., Zhang, W., Shi, X., Bai, S.Q., Zhao, X.Y., Mei, Z.G., Li, X.Y.: Synthesis and thermoelectric properties of KyCo4Sb12. Appl. Phys. Lett. 89, 221107 (2006)

    Article  Google Scholar 

  103. Yang, J., Zhang, L., Liu, Y., Chen, C., Li, J., Yu, D., He, J., Liu, Z., Tian, Y., Xu, B.: Investigation of skutterudite MgyCo4Sb12: high pressure synthesis and thermoelectric properties. J. Appl. Phys. 113, 113703 (2013)

    Article  Google Scholar 

  104. Puyet, M., Lenoir, B., Dauscher, A., Dehmas, M., Stiewe, C., Müller, E.: High temperature transport properties of partially filled CaxCo4Sb12 skutterudites. J. Appl. Phys. 95, 4852–4855 (2004)

    Article  Google Scholar 

  105. Chen, L.D., Kawahara, T., Tang, X.F., Goto, T., Hirai, T., Dyck, J.S., Chen, W., Uher, C.: Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12. J. Appl. Phys. 90, 1864–1868 (2001)

    Article  Google Scholar 

  106. Zhao, X.Y., Shi, X., Chen, L.D., Zhang, W.Q., Zhang, W.B., Pei, Y.Z.: Synthesis and thermoelectric properties of Sr-filled skutterudite SryCo4Sb12. J. Appl. Phys. 99, 053711 (2006)

    Article  Google Scholar 

  107. Mi, J.-L., Christensen, M., Nishibori, E., Kuznetsov, V., Rowe, D.M., Iversen, B.B.: Multitemperature synchrotron powder diffraction and thermoelectric properties of the skutterudite La0.1Co4Sb12. J. Appl. Phys. 107, 113507 (2010)

    Article  Google Scholar 

  108. Qiu, P., Shi, X., Giu, Y., Huang, X., Wan, S., Zhang, W., Chen, L., Yang, J.: Enhancement of thermoelectric performance in slightly charge-compensated CeyCo4Sb12 skutterudites. Appl. Phys. Lett. 103, 062103 (2013)

    Article  Google Scholar 

  109. Nolas, G.S., Kaeser, M., Littleton, R.T., IV., Tritt, T.M.: High figure of merit in partially filled ytterbium skutterudite materials. Appl. Phys. Lett. 77, 1855–1857 (2000)

    Article  Google Scholar 

  110. Pei, Y.Z., Bai, S.Q., Zhao, X.Y., Zhang, W., Chen, L.D.: Thermoelectric properties of EuyCo4Sb12 filled skutterudites. Solid State Sci. 10, 1422–1428 (2008)

    Article  Google Scholar 

  111. Sales, B.C., Chakoumakos, B.C., Mandrus, D.: Thermoelectric properties of thallium-filled skutterudites. Phys. Rev. B 61, 2475–2481 (2000)

    Article  Google Scholar 

  112. Qiu, Y., Xi, L., Shi, X., Qiu, P., Zhang, W., Chen, L., Salvador, J.R., Cho, J.Y., Yang, J., Chien, Y.-C., Chen, S.-W., Tang, Y., Snyder, G.J.: Charge-Compensated compound defects in Ga-containing thermoelectric Skutterudites. Adv. Funct. Mater. 23, 3194–3203 (2013)

    Article  Google Scholar 

  113. He, T., Chen, J., Rosenfeld, H.D., Subramanian, M.A.: Chem. Mater. 18, 759–762 (2006)

    Article  Google Scholar 

  114. Duan, B., Yang, J., Salvador, J.R., He, Y., Zhao, B., Wang, S., Wei, P., Ohuchi, F., Zhang, W., Hermann, R.P., Gourdon, O., Mao, S.X., Cheng, Y., Wang, C., Liu, J., Zhai, P., Tang, X., Zhang, Q., Yang, J.: Electronegative guests in CoSb3. Energy Environ Sci. 9, 2090–2098 (2016)

    Article  Google Scholar 

  115. Ortiz, B.R., Crawford, C.M., McKinney, R.W., Parilla, P.A., Toberer, E.S.: Thermoelectric properties of bromine filled CoSb3 skutterudite. J. Mater. Chem. A 4, 8444–8450 (2016)

    Article  Google Scholar 

  116. Li, J.L., Duan, B., Yang, H.J., Wang, H., Li, G., Yang, J., Chen, G., Zhai, P.: Thermoelectric properties of electronegatively filled SyCo4−xNixSb12 skutterudites. J. Mater. Chem. C 7, 8079–8085 (2019)

    Article  Google Scholar 

  117. Liu, Z.-Y., Zhu, J.-L., Tong, X., Niu, S., Zhao, W.-Y.: A review of CoSb3-based skutterudite thermoelectric materials. J. Adv. Ceramics 9, 647–673 (2020)

    Article  Google Scholar 

  118. Koza, M.M., Johnson, M.R., Viennois, R., Mutka, H., Girard, L., Ravot, D.: Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites. Nature Mat. 7, 805–810 (2008)

    Article  Google Scholar 

  119. Alleno, E., Benyahia, M., Vaney, J.-B., Provost, K., Paul-Boncour, V., Monnier, J., Dauscher, A., Lenoir, B.: High thermoelectric figure of merit in well optimized YbyCo4Sb12. J. Mater. Chem. C 8, 17034–17044 (2020)

    Article  Google Scholar 

  120. Tang, Y., Hanus, R., Chen, S.-W., Snyder, G.J.: Solubility design leading to high figure of merit in low-cost Ce-CoSb3 skutterudites. Nat. Commun. 6, 7584 (2015)

    Article  Google Scholar 

  121. Tang, Y., Qiu, Y., Xi, L., Shi, X., Zhang, W., Chen, L., Tseng, S.-M., Chen, S.-W., Snyder, G.J.: Phase diagram of In–Co–Sb system and thermoelectric properties of In-containing skutterudites. Energy Environ. Sci. 7, 812–819 (2014)

    Article  Google Scholar 

  122. Luo, H., Krizan, J.W., Muechler, L., Haldolaarachchige, N., Klimczuk, T., Xie, W., Fuccillo, M.K., Felser, C., Cava, R.J.: A large family of filled skutterudites stabilized by electron count. Nat. Commun. 6, 6489 (2015)

    Article  Google Scholar 

  123. Jeitschko, W., Braun, D.J.: LaFe4P12 with filled CoAs type structure and isotypic LnxMyPz. Acta Cryst. 33, 3401 (1977)

    Article  Google Scholar 

  124. Morelli, D.T., Meisner, G.P., Chen, B., Hu, S., Uher, C.: Cerium filling and doping of cobalt triantimonide. Phys. Rev. B 56, 7376–7383 (1997)

    Article  Google Scholar 

  125. Zhang, Q.H., Huang, X.Y., Bai, S.Q., Shi, X., Uher, C., Chen, L.D.: Thermoelectric devices for power generation: recent progress and future challenges. Adv. Eng. Mater. 18, 194–213 (2016)

    Article  Google Scholar 

  126. He, R., Schierning, G., Nielsch, K.: Thermoelectric devices: a review of devices, architectures and contact optimization. Adv. Mater. Technol. 3, 1700256 (2018)

    Article  Google Scholar 

  127. Chu, J., Huang, J., Liu, R., Liao, J., Xia, X., Zhang, Q., Wang, C., Gu, M., Bai, S.Q., Shi, X., Chen, L.D.: Nat. Commun. 11, 2723 (2020)

    Article  Google Scholar 

  128. Caillat, T., Chi, I., Huang, C.-K., Smith, K., Yu, K., Paik, J., Gogna, P., Phan, B., Heian, E., Holgate, T., VanderVeer, J., Bennett, R., Keyser, S., Frye, P., Wefers, K., Hoffmann, M., Deminico, M. An update of skutterudite-based thermoelectric technology for integration into a potential enhanced multi-mission radioisotope thermoelectric generator (eMMRTG). Nuclear and Emerging Technologies for Space, Knoxville, USA. https://nets2020.ornl.gov (2020)

  129. Toberer, E.S., May, A.F., Snyder, G.J.: Zintl chemistry for designing high efficiency thermoelectric materials. Chem. Mater. 22, 624–634 (2010)

    Article  Google Scholar 

  130. Peng, W., Chanakian, S., Zevalkink, A.: Crystal chemistry and thermoelectric transport of layered AM2X2 compounds. Inorg. Chem. Front. 5, 1744–1759 (2018)

    Article  Google Scholar 

  131. Shuai, J., Mao, J., Song, S., Zhang, Q., Chen, G., Ren, Z.: Recent progress and future challenges on thermoelectric Zintl materials. Mater. Today Phys. 1, 74–95 (2017)

    Article  Google Scholar 

  132. Kauzlarich, S.M., Brown, S.R., Snyder, G.J.: Zintl phases for thermoelectric devices. Dalton Trans. 2099–2107 (2007). https://doi.org/10.1039/b702266b

    Article  Google Scholar 

  133. Chanakian, S., Aydemir, U., Zevalkink, A., Gibbs, Z.M., Fleurial, J.-P., Bux, S., Snyder, G.J.: High temperature thermoelectric properties of Zn-doped Eu5In2Sb6. J. Mater. Chem. C 3, 10518–10524 (2015)

    Article  Google Scholar 

  134. Ohno, S., Zevalkink, A., Takagiwa, Y., Bux, S.K., Snyder, G.J.: Thermoelectric properties of the Yb9Mn4.2−xZnxSb9 solid solutions. J. Mater. Chem. A 2, 7478–7483 (2014)

    Article  Google Scholar 

  135. Pomrehn, G.S., Zevalkink, A., Zeier, W.G., Van De Walle, A., Snyder, G.J.: Defect-controlled electronic properties in AZn2Sb2 Zintl phases. Angewand. Chem. 53, 3422–3426 (2014)

    Article  Google Scholar 

  136. Toberer, E.S., Brown, S.R., Ikeda, T., Kauzlarich, S., Snyder, G.J.: High thermoelectric efficiency in lanthanum doped Yb14MnSb11. Appl. Phys. Lett. 93, 062110 (2008)

    Article  Google Scholar 

  137. Yu, C., Chen, Y., Xie, H., Snyder, G.J., Fu, C., Xu, J., Zhao, X., Zhu, T.: Improved thermoelectric properties in Lu-doped Yb14MnSb11 Zintl compounds. Appl. Phys. Exp. 5, 031801 (2012)

    Article  Google Scholar 

  138. Brown, S.R., Toberer, E.S., Ikeda, T., Cox, C.A., Gascoin, F., Kauzlarich, S.M., Snyder, G.J.: Improved thermoelectric performance in Yb14Mn1-xZnxSb11 by the reduction of spin-disorder scattering. Chem. Mater. 20, 3412–3419 (2008)

    Article  Google Scholar 

  139. Möchel, A., Sergueev, I., Wille, H.-C., Juranyi, F., Schober, H., Schweika, W., Brown, S.R., Kauzlarich, S.M., Hermann, R.P.: Lattice dynamics in the thermoelectric Zintl compound Yb14MnSb11. Phys. Rev. B 84, 184303 (2011)

    Article  Google Scholar 

  140. Ravi, V., Firdosy, S., Caillat, T., Brandon, E., Van Der Walde, K., Maricic, L., Sayir, A.: Thermal expansion studies of selected high-temperature thermoelectric materials. J. Electron. Mater. 38, 1433–1442 (2009)

    Article  Google Scholar 

  141. Gorai, P., Goyal, A., Toberer, E.S., Stevanovic, V.: A simple chemical guide for finding novel n-type dopable Zintl pnictide thermoelectric materials. J. Mater. Chem. A 7, 19385–19395 (2019)

    Article  Google Scholar 

  142. Ortiz, B.R., Gorai, P., Stevanovic, V., Toberer, E.S.: Thermoelectric performance and defect chemistry in n-Type Zintl KGaSb4. Chem. Mater. 29, 4523–4534 (2017)

    Article  Google Scholar 

  143. Ortiz, B.R., Gorai, P., Krishna, L., Mow, R., Lopez, A., McKinney, R., Stevanovic, V., Toberer, E.S.: Potential for high thermoelectric performance in n-type Zintl compounds: a case study of Ba doped KAlSb4. J. Mater. Chem. A 5, 4036–4046 (2017)

    Article  Google Scholar 

  144. Tamaki, H., Sato, H.K., Kanno, T.: Isotropic Conduction network and defect chemistry in Mg3+δSb2-based layered Zintl compounds with high thermoelectric performance. Adv. Mater. 28, 10182–10187 (2016)

    Article  Google Scholar 

  145. Zhang, J., Song, L., Pedersen, S.H., Yin, H., Hung, L.T., Iversen, B.B.: Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands. Nat. Comm. 8, 13901 (2017)

    Article  Google Scholar 

  146. Zhang, J., Song, L., Borup, K.A., Jorgensen, M.R.V., Iversen, B.B.: New insight on tuning electrical transport properties via chalcogen doping in n-type Mg3Sb2-based thermoelectric materials. Adv. Energy Mater. 8, 1702776 (2018)

    Article  Google Scholar 

  147. Shuai, J., Ge, B., Mao, J., Song, S., Wang, Y., Ren, Z.: Significant role of Mg stoichiometry in designing high thermoelectric performance for Mg3(Sb, Bi)2-based n-type Zintls. J. Am. Chem. Soc. 140, 1910–1915 (2018)

    Article  Google Scholar 

  148. Imasato, K., Fu, C., Pan, Y., Wood, M., Kuo, J.J., Felser, C., Snyder, G.J.: Metallic n-type Mg3Sb2 single crystals demonstrate the absence of ionized impurity scattering and enhanced thermoelectric performance. Adv. Mater. 32, 1908218 (2020)

    Article  Google Scholar 

  149. Pan, Y., Yao, M., Hong, X., Zhu, Y., Fan, F., Imasato, K., He, Y., Hess, C., Fink, J., Yang, J., Büchner, B., Fu, C., Snyder, G.J., Felser, C.: Mg3(Bi, Sb)2 single crystals towards high thermoelectric performance. Energy Environ. Sci. 13, 1717–1724 (2020)

    Article  Google Scholar 

  150. Imasato, K., Kang, S.D., Ohno, S., Snyder, G.J.: Band engineering in Mg3Sb2 by alloying with Mg3Bi2 for enhanced thermoelectric performance. Mater. Horiz. 5, 59–64 (2018)

    Article  Google Scholar 

  151. Mao, J., Zhu, H., Ding, Z., Liu, Z., Gamage, G.A., Chen, G., Ren, Z.: High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 365, 495–498 (2019)

    Article  Google Scholar 

  152. Zhang, J., Iversen, B.B.: Fermi surface complexity, effective mass, and conduction band alignment in n-type thermoelectric Mg3Sb2–xBix from first principles calculations. J. Appl. Phys. 126, 085104 (2019)

    Article  Google Scholar 

  153. Potel, M., Chevrel, R., Sergent, M.: In2Mo15Se19: nouvel exemple de structure à motifs Mo6Se8 et Mo9Se11. Acta Cryst. B37, 1007–1010 (1981)

    Article  Google Scholar 

  154. Picard, S., Gougeon, P., Potel, M.: K2Mo15S19: a novel ternary reduced molybdenum sulfide containing Mo6 and Mo9 clusters. Acta Cryst. E58, i12–i14 (2002)

    Google Scholar 

  155. Picard, S., Salloum, D., Gougeon, P., Potel, M.: Cs2Mo15S19: a novel ternary reduced molybdenum sulfide containing Mo6 and Mo9 clusters. Acta Cryst. C60, i61–i62 (2004)

    Google Scholar 

  156. Gougeon, P., Gall, P., Al Rahal Al Orabi, R., Fontaine, B., Gautier, R., Potel, M., Zhou, T., Lenoir, B., Colin, M., Candolfi, C., Dauscher, A.: Synthesis, crystal and electronic structures, and thermoelectric properties of the novel cluster compound Ag3In2Mo15Se19. Chem. Mater. 24, 2899–2908 (2012)

    Article  Google Scholar 

  157. Zhou, T., Colin, M., Candolfi, C., Boulanger, C., Dauscher, A., Santava, E., Hejtmanek, J., Baranek, P., Al Rahal Al Orabi, R., Potel, M., Fontaine, B., Gougeon, P., Gautier, R., Lenoir, B.: Comprehensive study of the low-temperature transport and thermodynamic properties of the cluster compounds AgxMo9Se11 (341 ≤ x ≤ 378). Chem. Mater. 26, 4765–4775 (2014)

    Article  Google Scholar 

  158. Al Rahal Al Orabi, R., Gougeon, P., Gall, P., Fontaine, B., Gautier, R., Colin, M., Candolfi, C., Dauscher, A., Hejtmanek, J., Malaman, B., Lenoir, B.: X-ray characterization, electronic band structure, and thermoelectric properties of the cluster compound Ag2Tl2Mo9Se11. Inorg. Chem. 53, 11699–11709 (2014)

    Article  Google Scholar 

  159. Al Rahal Al Orabi, R., Fontaine, B., Gautier, R., Gougeon, P., Gall, P., Bouyrie, Y., Dauscher, A., Candolfi, C., Lenoir, B.: Cu insertion into the Mo12 cluster compound Cs2Mo12Se14: synthesis, crystal and electronic structures, and physical properties. Inorg. Chem. 55, 6616–6624 (2016)

    Article  Google Scholar 

  160. Gougeon, P., Gall, P., Merdrignac-Conanec, O., Aranda, L., Dauscher, A., Candolfi, C., Lenoir, B.: Synthesis, crystal structure, and transport properties of the hexagonal Mo9 cluster compound Ag3RbMo9Se11. Inorg. Chem. 56, 9684–9692 (2017)

    Article  Google Scholar 

  161. Gougeon, P., Gall, P., Al Rahal Al Orabi, R., Boucher, B., Fontaine, B., Dauscher, A., Candolfi, C., Lenoir, B.: Electronic band structure and transport properties of the cluster compound Ag3Tl2Mo15Se19. Inorg. Chem. 58, 5533–5542 (2019)

    Article  Google Scholar 

  162. Al Rahal Al Orabi, R., Boucher, B., Fontaine, B., Gall, P., Candolfi, C., Lenoir, B., Gougeon, P., Halet, J.-F., Gautier, R.: Towards the prediction of the transport properties of cluster-based molybdenum chalcogenides. J. Mater. Chem. C 5, 12097–12104 (2017)

    Article  Google Scholar 

  163. Masschelein, P., Candolfi, C., Dauscher, A., Gendarme, C., Al Rahal Al Orabi, R., Gougeon, P., Potel, M., Gall, P., Gautier, R., Lenoir, B.: Influence of S and Te substitutions on the thermoelectric properties of the cluster compound Ag3.8Mo9Se11. J. Alloys Compnd 739, 360–367 (2018)

    Article  Google Scholar 

  164. Daigre, G., Gougeon, P., Gall, P., Merdrignac-Conanec, O., Al Rahal Al OrabiGautier, R.R., Dauscher, A., Candolfi, C., Lenoir, B.: Unravelling the beneficial influence of ag insertion on the thermoelectric properties of the cluster compound K2Mo15Se19. ACS Appl. Ener. Mater. 3, 2846–2855 (2020)

    Article  Google Scholar 

  165. Colin, M., Zhou, T., Lenoir, B., Dauscher, A., Al Rahal Al Orabi, R., Gougeon, P., Potel, M., Baranek, P., Semprimoschnig, C.: Optimization of Bulk Thermoelectrics: influence of Cu insertion in Ag3.6Mo9Se11. J. Electron. Mater. 41, 1360–1364 (2012)

    Article  Google Scholar 

  166. Butorin, S.M., Kvashnina, K.O., Klintenberg, M., Kavcic, M., Zitnik, M., Bucar, K., Gougeon, P., Gall, P., Candolfi, C., Lenoir, B.: Effect of Ag Doping on Electronic Structure of Cluster Compounds AgxMo9Se11 (x = 3.4, 3.9). ACS Appl. Ener. Mater. 1, 4032–4039 (2018)

    Article  Google Scholar 

  167. Zhou, T., Lenoir, B., Colin, M., Dauscher, A., Al Rahal Al Orabi, R., Gougeon, P., Potel, M., Guilmeau, E.: Promising thermoelectric properties in AgxMo9Se11 compounds (3.4 ≤ x ≤ 3.9). Appl. Phys. Lett. 98, 162106 (2011)

    Article  Google Scholar 

  168. Candolfi, C., Misek, M., Gougeon, P., Al Rahal Al Orabi, R., Gall, P., Gautier, R., Migot, S., Ghanbaja, J., Kastil, J., Levinsky, P., Hejtmanek, J., Dauscher, A., Malaman, B., Lenoir, B.: Coexistence of a charge density wave and superconductivity in the cluster compound K2Mo15Se19. Phys. Rev. B 101, 134521 (2020)

    Article  Google Scholar 

  169. Poole, C.K., Farach, H.A., Creswick, R.J.: Handbook of Superconductivity. Academic, New York (2000)

    Google Scholar 

  170. Aswal, D.K., Basu, R., Singh, A.: Key issues in development of thermoelectric power generators: high figure-of-merit materials and their highly conducting interfaces with metallic interconnects. Energy Convers. Manag. 114, 50–67 (2016)

    Article  Google Scholar 

  171. Freer, R., Powell, A.V.: Realising the potential of thermoelectric technology: a Roadmap. J. Mater. Chem. C 8, 441–463 (2020)

    Article  Google Scholar 

  172. Mesalam, R., Williams, H.R., Ambrosi, R.M., Garcia-Canadas, J., Stephenson, K.: Towards a comprehensive model for characterising and assessing thermoelectric modules by impedance spectroscopy. Appl. Energy 226, 1208–1218 (2018)

    Article  Google Scholar 

  173. Mesalam, R., Williams, H.R., Ambrosi, R.M., Kramer, D.P., Barklay, C.D., Garcia-Canadas, J., Stephenson, K., Weston, D.P.: Impedance spectroscopy characterization of neutron irradiated thermoelectric modules for space nuclear power. AIP Adv. 9, 055006 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the European Space Agency (ESA/ESTEC) under the ESA/ESTEC Contracts C20179 and NPI Contracts No. 22955/09/NL/PA and 40001134346/15/NL/RA for financial support.

Funding

European Space Agency (ESA/ESTEC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christophe Candolfi or Bertrand Lenoir.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interest.

Availability of data and material

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Christopher Semprimoschnig passed away in 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Candolfi, C., Oualid, S.E., Ibrahim, D. et al. Thermoelectric materials for space applications. CEAS Space J 13, 325–340 (2021). https://doi.org/10.1007/s12567-021-00351-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-021-00351-x

Keywords

Navigation