Skip to main content

Advertisement

Log in

The importance of primary inoculum and area-wide disease management to crop health and food security

  • Original Paper
  • Published:
Food Security Aims and scope Submit manuscript

Abstract

In some epidemics that have devastating consequences, the primary inoculum plays an important role in both epidemic onset and intensification. This article documents the dynamics of such epidemics, and illustrates their importance using two examples: Huanglongbing of citrus and begomoviruses of tomato. The latter disease is a major constraint to tomato production in Brazil, while the former has become a threat to global citrus production and farmers’ livelihoods. In spite of their importance little is known of the characteristics of these diseases and their management. This is because classical botanical epidemiology considers two types of diseases: polycyclic diseases, where the inoculum that causes infections is produced during the epidemic in or on individual plants that had been previously infected in the course of that epidemic; or monocyclic diseases, where inoculum that causes infection is not produced in or on individual plants that had been infected in the course of the epidemic, but in the soil, on secondary hosts, or in infected crop plants of the same host in other fields. Diseases of the first type typically present a logistic disease progress curve and management is based on reducing the rate of infection, whereas diseases of the second type present a monomolecular disease progress curve and management is based on reducing the initial inoculum. This article deals with plant diseases that depart in their structure and behaviour from these two archetypes, because they borrow elements from both. We address polycyclic diseases in which the primary inoculum has a continuous and dynamic role, and in which the secondary inoculum contributes to epidemic build-up, i.e., polycyclic diseases with continuous primary spread. This epidemiological structure generates less clear-cut disease progress curves, but usually follows a monomolecular dynamic. Our focus on this type of disease is multifold because (1) this more complex, combined, pattern is actually quite common, often leading to grave plant diseases epidemics, with impacts at the farm, community, and country scales, and (2) such epidemics are among the most difficult to manage. Our analysis leads us to assess past errors and current courses of action. It allows us to recognize, in addition to the conventional tools for management with local effects, the critical importance of collective action. Collective management action – at the farm, community, or national scales – is congruent with the characteristics of many epidemics, because they also entail properties at successive and nested scales. The management of such epidemics needs to address both the primary and secondary inoculum. More importantly, these actions have to be performed in an area-wide, regional basis in order to be effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Agrios, G. N. (2005). Plant pathology. Burlington: Elsevier Academic Press.

    Google Scholar 

  • Albuquerque, L. C., Varsani, A., Fernandes, F. R., Pinheiro, B., Martin, D. P., Ferreira, P. T. O., Lemos, T. O., & Inoue-Nagata, A. K. (2012). Further characterization of tomato-infecting begomoviruses in Brazil. Archives of Virology, 157, 747–752.

    Article  CAS  PubMed  Google Scholar 

  • Amorim, L., Rezende, J. A. M., & Bergamin Filho, A. (2011). Manual de Fitopatologia. Princípios e Conceitos. São Paulo: Ceres.

    Google Scholar 

  • Aubert, B. (1990). Integrated activities for the control of huanglongbin-greening and its vector Diaphorina citri Kuwayama in Asia. In: B. Aubert, S. Tontyaporn, D. Buangsuwon (Eds.), Rehabilitation of Citrus Industry in the Asia Pacific Region, (pp.133-144). Proceedings of Asia Pacific International Conference on Citriculture, Chiang Mai, Thailand, 4–10 Febr. 1990. Rome: UNDP-FAO.

  • Aubert, B. (1992). Citrus greening disease, a serious limiting factor for citriculture in Asia and Africa. Proceedings of the International Society of Citriculture, 817–820.

  • Avelino, J., Cristancho, M., Georgiou, S., Imbach, P., Aguilar, L., Bornemann, G., & Morales, C. (2015). The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Security, 7, 303–321.

    Article  Google Scholar 

  • Azzam, O., & Chancellor, T. C. B. (2002). The biology, epidemiology, and management of rice tungro disease in Asia. Plant Disease, 86, 88–100.

    Article  CAS  Google Scholar 

  • Barbosa, J. C., Teixeira, A. P. M., Moreira, A. G., Camargo, L. E. A., Bergamin, A., Kitajima, E. W., & Rezende, J. A. M. (2008). First report of Tomato chlorosis virus infecting tomato crops in Brazil. Plant Disease, 92, 1709–1709.

    Article  Google Scholar 

  • Barbosa, J. C., Firmino, A. C., Reis, M. S., Barreto, S. S., Inoue-Nagata, A. K., Bergamin Filho, A., & Rezende, J. A. M. (2009). Natural infection of Nicandra physaloides by Tomato severe rugose virus in Brazil. Journal of General Plant Pathology, 75, 440–443.

    Article  Google Scholar 

  • Barbosa, J. C., Rezende, J. A. M., Amorim, L., & Bergamin Filho, A. (2015). Temporal dynamics of Tomato severe rugose virus and Bemisia tabaci in tomato fields in São Paulo, Brazil. Journal of Phytopathology. doi:10.1111/jph.12402. Online first.

    Google Scholar 

  • Barreto, S. S., Hallwass, M., Aquino, O. M., & Inoue-Nagata, A. K. (2013). A study of weeds as potential inoculum sources for a tomato-infecting begomovirus in central Brazil. Phytopathology, 103, 436–444.

    Article  CAS  PubMed  Google Scholar 

  • Bassanezi, R. B., Montesino, L. H., & Stuchi, E. S. (2009). Effects of huanglongbing on fruit quality of sweet orange cultivars in Brazil. European Journal of Plant Pathololgy, 125, 565–572.

    Article  Google Scholar 

  • Bassanezi, R. B., Montesino, L. H., Gasparoto, M. C. G., Bergamin Filho, A., & Amorim, L. (2011). Yield loss caused by huanglongbing in different sweet orange cultivars in São Paulo, Brazil. European Journal of Plant Pathololgy, 130, 577–586.

    Article  Google Scholar 

  • Bassanezi, R. B., Belasque, J., Jr., & Montesino, L. H. (2013a). Frequency of symptomatic trees removal in small citrus blocks on citrus huanglongbing epidemics. Crop Protection, 52, 72–77.

    Article  Google Scholar 

  • Bassanezi, R. B., Montesino, L. H., Gimenes-Fernandes, N., Yamamoto, P. T., Gottwald, T. R., Amorim, L., & Bergamin Filho, A. (2013b). Efficacy of area-wide inoculum reduction and vector control on temporal progress of huanglongbing in young sweet orange plantings. Plant Disease, 97, 789–796.

    Article  Google Scholar 

  • Belasque, J., Jr., Bassanezi, R. B., Yamamoto, P. T., Ayres, A. J., Tachibana, A., Violante, A. R., Tank, A., Jr., Di Giorgi, F., Tersi, F. E. A., Menezes, G. M., Dragone, J., Jank, R. H., Jr., & Bové, J. M. (2010a). Lessons from huanglongbing management in São Paulo State, Brazil. Journal of Plant Pathology, 92, 285–302.

    Google Scholar 

  • Belasque, J., Jr., Yamamoto, P. T., Miranda, M. P., Bassanezi, R. B., Ayres, A. J., & Bové, J. M. (2010b). Controle do huanglongbing no estado de São Paulo, Brasil. Citrus Research and Technology, 31, 53–64.

    Article  Google Scholar 

  • Bergamin Filho, A., & Amorim, L. (1996). Doenças de Plantas Tropicais: Epidemiologia e Controle Econômico. São Paulo: Ceres.

    Google Scholar 

  • Bergamin Filho, A., Kimati, H., & Amorim, L. (1995). Manual de Fitopatologia. Princípios e Conceitos. São Paulo: Ceres.

    Google Scholar 

  • Berger, R. D. (1981). Comparison of the Gompertz and logistic equations to describe plant disease progress. Phytopathology, 71, 716–719.

    Article  Google Scholar 

  • Boina, D. R., Meyer, W. L., Onagbola, E. O., & Stelinski, L. L. (2009). Quantifying dispersal of Diaphorina citri (Hemiptera: Psyllidae) by immunomarking and potential impact of unmanaged groves on commercial citrus management. Environmental Entomology, 38, 1250–1258.

    Article  PubMed  Google Scholar 

  • Boiteux, L. S., Oliveira, V. R., Silva, C. H., Makishima, N., Inoue-Nagata, A. K., Fonseca, M. E. D., & Giordano, L. D. (2007). Reaction of tomato hybrids carrying the Ty-1 focus to Brazilian bipartite Begomovirus species. Horticultura Brasileira, 25, 20–23.

    Article  Google Scholar 

  • Bové, J. M. (2006). Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. Journal of Plant Pathology, 88, 7–37.

    Google Scholar 

  • Bové, J. M. (2014). Huanglongbing or yellow shoot, a disease of Gondwanan origin: Will it destroy citrus worldwide? Phytoparasitica published online 06 July 2014.

  • Brassett, P. R., & Gilligan, C. A. (1988). A model for primary and secondary infection in botanical epidemics. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 95, 352–360.

    Google Scholar 

  • Butt, D. J., & Royle, D. J. (1980). The importance of terms and definitions for a conceptually unified epidemiology. In J. Palti & J. Kranz (Eds.), Comparative epidemiology. A tool for better disease management (pp. 29–49). Wageningen: Pudoc.

    Google Scholar 

  • Cabunagan, R. C., Castilla, N., Colloquio, E. L., Tiongco, E. R., Truong, X. H., Fernandez, J., Du, M. J., Zarargosa, B., Hozak, R. R., Savary, S., & Azzam, O. (2001). Synchrony of planting and proportions of susceptible varieties affect rice tungro disease epidemics in the Philippines. Crop Protection, 20, 499–510.

    Article  Google Scholar 

  • Capoor, S. P., Rao, D. G., & Viswanath, S. M. (1967). Diaphorina citri: a vector of the greening disease of citrus in India. Indian Journal of Agricultural Sciences, 37, 572–576.

    Google Scholar 

  • Cohen, S., Kern, J., Harpaz, I., & Ben-Joseph, R. (1988). Epidemiological studies of the Tomato yellow leaf curl virus (TYLCV) in the Jordan valley, Israel. Phytoparasitica, 16, 259–270.

    Article  Google Scholar 

  • Coletta-Filho, H. D., Targon, M. L. P. N., Takita, M. A., De Negri, J. D., Pompeu, J., Jr., & Machado, M. A. (2004). First report of causal agent of Huanglongbing (“Candidatus Liberibacter asiaticus”) in Brazil. Plant Disease, 88, 1382.

    Article  Google Scholar 

  • Da Graça, J. V. (1991). Citrus greening disease. Annual Review of Phytopathology, 29, 109–136.

    Article  Google Scholar 

  • Da Graça, J. V., & Korsten, L. (2004). Citrus huanglongbing: review, present status and future strategies. In S. A. M. H. Naqvi (Ed.), Diseases of fruit and vegetables (v.1, pp. 229–245). Dordrecht: Kluwer Academic Press.

    Google Scholar 

  • Dagulo, L., Danyluk, M. D., Spann, T. M., Valim, M. F., Goodrich-Schneider, R., Sims, C., & Rouseff, R. (2010). Chemical characterization of orange juice from trees infected with citrus greening (huanglongbing). Journal of Food Science, 75, C199–C207.

    Article  CAS  PubMed  Google Scholar 

  • Della Vecchia, M. G. S., Rosa, D. D., Bergamin Filho, A., Amorim, L., Rezende, J. A. M., & Ribeiro, A. (2007). Dinâmica temporal e espacial da begomovirose causada por Tomato yellow vein streak virus em tomateiro na região de Campinas, SP. Summa Phytopathologica, 33, 388–396.

    Article  Google Scholar 

  • FAO. (2006). Food security. Policy Brief June 2006, Issue 2, p 4.

  • FAO, IFAD and WFP. (2013). The state of food insecurity in the world 2013. The multiple dimensions of food security. Rome: FAO.

    Google Scholar 

  • Faria, J. C., Bezerra, I. C., Zerbini, F. M., Ribeiro, S. G., & Lima, M. F. (2000). Situação atual das geminiviroses no Brasil. Fitopatologia Brasileira, 25, 125–137.

    Google Scholar 

  • Fernandes, F. R., Albuquerque, L. C., Giordano, L. B., Boiteux, L. S., Avila, A. C., & Inoue-Nagata, A. K. (2008). Diversity and prevalence of Brazilian bipartite begomovirus species associated to tomatoes. Virus Genes, 36, 251–258.

    Article  CAS  PubMed  Google Scholar 

  • Flores, E., Silbersmidt, K., & Kramer, M. (1960). Observações de “clorose infecciosa” das malváceas em tomateiros do campo. O Biologico, 26, 65–69.

    Google Scholar 

  • Gatineau, F., Bonnot, F., Yen, T. T. H., Tuan, D. H., Tuyen, N. D., & Truc, N. T. N. (2010). Effects of imidacloprid and fenobucarb on the dynamics of the psyllid Diaphorina citri Kuwayama and on the incidence of Candidatus Liberibacter asiaticus. Fruits, 65, 209–220.

    Article  Google Scholar 

  • Gäumann, E. (1950). Principles of plant infection. London: Crosby Lockwood and Son.

    Google Scholar 

  • Gilbertson, R., Rojas, M., & Natwick, E. (2011). Development of integrated pest management (IPM) strategies for whitefly (Bemisia tabaci)-transmissible Geminiviruses. In W. M. O. Thompson (Ed.), The whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) interaction with geminivirus-infected host plants (pp. 323–356). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Gilligan, C. A. (1994). Temporal aspects of the development of root disease epidemics. In C. L. Campbell & D. M. Benson (Eds.), Epidemiology and management of root diseases (pp. 148–194). Berlin: Springer.

    Chapter  Google Scholar 

  • Gilligan, C. A. (2002). An epidemiological framework for disease management. Advances in Botanical Research, 38, 1–64.

    Article  Google Scholar 

  • Gilligan, C. A., & Kleczkowski, A. (1997). Population dynamics of botanical epidemics involving primary and secondary infection. Philosophical Transactions of the Royal Society London B, 352, 591–608.

    Article  Google Scholar 

  • Gottwald, T. R. (2010). Current epidemiological understanding of citrus huanglongbing. Annual Review of Phytopathology, 48, 119–139.

    Article  CAS  PubMed  Google Scholar 

  • Gottwald, T. R., da Graça, J. V., & Bassanezi, R. B. (2007). Citrus huanglongbing: the pathogen and its impact. Plant Health Progress. doi:10.1094/PHP-2007-0906-01. PubMed RV.

    Google Scholar 

  • Gottwald, T. R., Irey, M., Gast, T., Parnell, S., Taylor, E., & Hilf, M. (2010). Spatio-temporal analysis of an HLB epidemic in Florida and implications for future spread. Proceedings of the 17th Conference of the International Organization of Citrus Virologists, Riverside, CA. 84–97. (http://www.ivia.es/iocv/).

  • Halbert, S. E. (2005). The discovery of huanglongbing in Florida, p. H-3. In: Proceedings 2nd International Citrus Canker and Huanglongbing Research Workshop. Florida Citrus Mutual, Orlando, FL.

  • Hall, D. G., Gottwald, T. R., Stover, E., & Beattie, G. A. (2013). Evaluation of management programs for protecting young citrus plantings from Huanglongbing. HortScience, 48, 330–337.

    Google Scholar 

  • Holt, J., Colvin, J., & Muniyappa, V. (1999). Identifying control strategies for tomato leaf curl virus disease using an epidemiological model. Journal of Applied Ecology, 36, 625–633.

    Article  Google Scholar 

  • Inoue-Nagata, A. K. (2013). Doenças Viróticas. In M. A. R. Alvarenga (Ed.), Tomate. Produção em campo, casa de vegetação e hidroponia (pp. 327–344). Lavras: Editora Universitária de Lavras.

    Google Scholar 

  • Kuchment, A. (2013). The end of orange juice. Scientific American, 308, 44–51.

    Article  Google Scholar 

  • Lourenção, A. L., & Nagai, H. (1994). Surtos populacionais de Bemisia tabaci no estado de São Paulo. Bragantia, 53, 53–59.

    Google Scholar 

  • Madden, L. V., Hughes, G., & Van den Bosch, F. (2007). The study of plant disease epidemics. St Paul, Minnesota, USA: The American Phytopathology Press.

    Google Scholar 

  • Matthews, L., Haydon, D. T., Shaw, D. J., Chase-Topping, M. E., Keeling, M. J., & Woolhouse, M. E. J. (2003). Neighbourhood control policies and the spread of infectious diseases. Proceedings of the Royal Society B, 270, 1659–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McClean, A. P. D., & Oberholzer, P. C. J. (1965). Greening disease of sweet orange: evidence that it is caused by a transmissible virus. South African Journal of Agricultural Science, 8, 253–276.

    Google Scholar 

  • McCook, S., & Vandermeer, J. (2015). The big rust and the red queen: long-term perspectives on coffee rust research. Phytopathology, 105, 1164–1173.

    Article  PubMed  Google Scholar 

  • Polston, J. E., & Anderson, P. K. (1997). The emergence of whitefly-transmitted geminiviruses in tomato in the western hemisphere. Plant Disease, 81, 1358–1369.

    Article  Google Scholar 

  • Polston, J. E., Chellemi, D. O., Schuster, D. J., McGovern, R. J., & Stansly, P. A. (1996). Spatial and temporal dynamics of tomato mottle geminivirus and Bemisia tabaci (Genn) in Florida tomato fields. Plant Disease, 80, 1022–1028.

    Article  Google Scholar 

  • Puche, H., Berger, R. D., & Funderburk, J. E. (1995). Population dynamics of Frakliniella species (Thysanoptera: Thripidae) thrips and progress of spotted wilt in tomato fields. Crop Protection, 14, 577–583.

    Article  Google Scholar 

  • Richmond, B. (2013). An introduction to systems thinking. Stella software. New Hampshire: Isee Sytems.

    Google Scholar 

  • Savary, S. (2007). Epidemics of plant diseases: mechanisms, dynamics and management. Chapter 7. In M. Tibayrenc (Ed.), Encyclopaedia of infectious diseases (pp. 125–136). London: Wiley.

    Chapter  Google Scholar 

  • Savary, S. (2014). The roots of crop health: cropping practices and disease management. Food Security (Submitted).

  • Savary, S., & Willocquet, L. (2014). Simulation modeling in botanical epidemiology and crop loss analysis. APSnet education center. The Plant Health Instructor. doi:10.1094/PHI-A-2014-0314-01.

    Google Scholar 

  • Savary, S., Fabellar, N., Tiongco, E. R., & Teng, P. S. (1993). A characterization of rice tungro epidemics in the Philippines from historical survey data. Plant Disease, 77, 376–382.

    Article  Google Scholar 

  • Savary, S., Willocquet, L., & Teng, P. S. (1997). Modelling sheath blight epidemics on rice tillers. Agricultural Systems, 55, 359–384.

    Article  Google Scholar 

  • Strange, R. N., & Scott, P. R. (2005). Plant disease: a threat to global food security. Annual Review of Phytopathology, 43, 83–116.

    Article  CAS  PubMed  Google Scholar 

  • Teixeira, D. C., Danet, J. L., Eveillard, S., Martins, E. C., Jesus, W. C., Jr., Yamamoto, P. T., Lopes, S. A., Bassanezi, R. B., Ayres, A. J., Saillard, C., & Bové, J. M. (2005). Citrus huanglongbing in São Paulo State, Brazil: PCR detection of the Candidatus Liberibacter species associated with the disease. Molecular and Cellular Probes, 19, 173–179.

    Article  CAS  Google Scholar 

  • Van der Plank, J. E. (1963). Plant diseases. Epidemics and control. New York: Academic.

    Google Scholar 

  • Van der Plank, J. E. (1965). Dynamics of epidemics of plant diseases. Science, 147, 120–124.

    Article  PubMed  Google Scholar 

  • Wintermantel, W. M., Wisler, G. C., Anchieta, A. G., Liu, H.-Y., Karasev, A. V., & Tzanetakis, I. E. (2005). The complete nucleotide sequence and genome organization of tomato chlorosis virus. Archives of Virology, 150, 2287–98.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, P. T., Felippe, M. R., Garbim, L. F., Coelho, J. H. C., Ximenes, N. L., Martins, E. C., Leite, A. P. R., Sousa, M. C., Abrahão, D. P., & Braz, J. D. (2006). Diaphorina citri (Hemiptera: Psyllidae): vector of the bacterium Candidatus Liberibacter americanus. Proceedings of Huanglongbing – Greening International Workshop. P. 96. Fundecitrus: Araraquara.

  • Zadoks, J. C. (1971). Systems analysis and the dynamics of epidemics. Phytopathology, 61, 600–610.

    Article  Google Scholar 

  • Zadoks, J. C., & Schein, R. D. (1979). Epidemiology and plant disease management. New York: Oxford University Press.

    Google Scholar 

Download references

Acknowledgments

We thank Embrapa (02.11.05.005.00.00), CNPq (402829/2012-3), FAP DF (193.000.50/2012), and FAPESP (2012/51771-4) for financial support. We also thank the reviewers for valuable corrections and comments regarding this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bergamin Filho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filho, A.B., Inoue-Nagata, A.K., Bassanezi, R.B. et al. The importance of primary inoculum and area-wide disease management to crop health and food security. Food Sec. 8, 221–238 (2016). https://doi.org/10.1007/s12571-015-0544-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12571-015-0544-8

Keywords

Navigation