Skip to main content

Advertisement

Log in

Impact of climate change on the yield of tropical root and tuber crops vs. rice and potato in India

  • Original Paper
  • Published:
Food Security Aims and scope Submit manuscript

Abstract

The current study focused on the impact of climate change on tropical root and tuber crops of India over some of the major growing areas using the crop model, WOFOST. As part of this study, the impact of climate change on the yield of rice and potato is also carried out using the same crop model to understand the advantages of root and tuber crops over the yield variations of rice and potato. The LARS weather generator is used to derive future climate for 2030, 2050, and 2070 for the two representative concentration pathways (RCPs)-4.5 and 8.5. The future climate projections in the study locations indicate an increment in minimum and maximum temperatures up to a value of 3.4 and 3.8 ºC respectively. The rainfall also indicates a drastic fluctuation from -721 to 448 mm in the future. The results reveal that the predicted crop yield varies from one location to another depending on the future climate. Cassava (-13 to 12%, -17 to 8%), sweet potato (-32 to 14%, -38 to 13%), greater yam (-11 to 8, -14 to 6), elephant foot yam (-10 to 6, -12 to 4), and taro (-16 to 19, -28 to 18) can be considered as future crops based on their predicted yield variations and economics compared to that of rice (-26 to 15%, -50 to 18%) and potato (-37 to 7%, -59 to 8.5%) for both the RCPs. Among other crops, sweet potato has the same crop duration as rice and potato and can be recommended to increase food access. These crops can be recommended for enhancing the availability of food based on their superiority in dry matter production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akinola, A. A., Oke, J. T. O., Adesiyan, A. T., & Famuyini, C. A. (2019, September 23–26). Climate change and economic efficiency of yam farmers in Ekiti State, Nigeria. 6th African Conference of Agricultural Economists, Abuja, Nigeria.

  • Akpenpuun, T. D., & Busari, R. A. (2017). Impact of climate on the yield of major tuber crops in Kwara state, Nigeria. Global Journal of Agricultural Sciences, 16, 61–65.

    Google Scholar 

  • Angba, C. W., Baines, R. N., & Butler, A. J. (2020). Examining yam production in response to climate change in Nigeria: A cointegration model approach. Social Sciences, 9(42). https://doi.org/10.3390/socsci9040042

  • Belehu, T., & Hammes, P. S. (2004). Effect of temperature, soil moisture content and type of cutting on establishment of sweet potato cuttings. South African Journal of Plant and Soil, 21, 85–89.

    Article  Google Scholar 

  • Boansi, D. (2017). Effect of climatic and non-climatic factors on cassava yields in Togo: Agricultural policy implications. Climate 5(28). https://doi.org/10.3390/cli5020028

  • Bodh, P. C., Yadav, R., Sharma, A., Yadav, M., Arora N., Dawar, S., & Prasad, G. (2019). Agricultural statistics at a glance 2019. Govt. of India, Ministry of Agriculture and Farmers Welfare, Department of Agriculture Cooperation and Farmers Welfare, Directorate of Economics and Statistics, 335.

  • Boogaard, H., Van Diepen, C., Rotter, R., Cabrera, J., & Van Laar, H. (1998). WOFOST 7.1; user's guide for the WOFOST 7.1 crop growth simulation model and WOFOST Control Center 1.50927–4499.

  • Bradbury, J. H., & Holloway, W. D. (1988). Chemistry of tropical root crops: Significance for nutrition and agriculture in the Pacifics. XF2006282710.6.

  • Byju, G., & Suja, G. (2020). Chapter 5 - Mineral nutrition of cassava. Advances in Agronomy, 159, 169–235.

  • Chandrasekara, A., & Kumar, T. J. (2016). Roots and tuber crops as functional foods: A review on phytochemical constituents and their potential health benefits. International Journal of Food Science. https://doi.org/10.1155/2016/3631647

    Article  PubMed  PubMed Central  Google Scholar 

  • Churpal, D., Koshta, A. K., & Choudhary, V. K. (2015). An economic analysis of rice cultivation and constraint in Dhamtari district of Chhattisgarh. India. Plant Archieves, 15(2), 651–656.

    Google Scholar 

  • Damodaran, K., Latha Kumari, C. S., Dhidhika, C., Maya, R., Sindhu, K., Deepthi, S., Mini, M. N., Thankamani, K., & Deepa, S. N. (2019). Agricultural Statistics 2017–2018, Department of economics & statistics, Govt. of Kerala. 233.

  • Dladla, L. N. T., Modi, A. T., Mabhaudhi, T., & Chibarabada, T. P. (2019). Yield, water use, and water use efficiency of sweet potato under different environments. Acta Horticulturae 1253. ISHS. https://doi.org/10.17660/ActaHortic.2019.1253.38

  • Dua, V. K., Govindakrishnan, P. M., & Singh, B. P. (2014). Calibration of WOFOST model for potato in India. Potato Journal, 41(2), 105–112.

    Google Scholar 

  • FAOSTAT (2021) Production and area; Cassava, potatoes, rice, and sweet potato; India; 2019 (Online). Food and Agriculture Organization of the United Nations. Downloaded data http://www.fao.org/faostat/en/#data/QC. Accessed 12 May 2021.

  • George, J., & Sunitha, S. (2012–2013). All India Coordinated Research Project on Tuber Crops (AICRP-TC): Annual Report. CTCRI|QSF|RP-416. 124.

  • George, J., & Sunitha, S. (2013–2014). All India Coordinated Research Project on Tuber Crops (AICRP-TC): Annual Report 2013–2014. CTCRI|QSF|RP-416. 159.

  • George, J., Sunitha, S., & Immanuel, S. (2014–2015). All India Coordinated Research Project on Tuber Crops (AICRP-TC): Annual Report. CTCRI|QSF|RP-416. 168.

  • Hazeleger, W., Wang, X., Severijns, C., et al. (2012). EC-Earth V2.2: Description and validation of a new seamless earth system prediction model. Climate Dynamics, 39, 2611–2629. https://doi.org/10.1007/s00382-011-1228-5

    Article  Google Scholar 

  • Iese, V., Holland, E., Wairiu, M., Haveam, R., Patolo, S., Nishi, M., Hoponoa, T., Bourke, R. M., Dean, A., & Waqainabete, L. (2018). Facing food security risks: The rise and rise of the sweet potato in the Pacific Islands. Global Food Security, 18, 48–56.

    Article  Google Scholar 

  • Isaiah, A. I., Yamusa, A. M., & Odunze, A. C. (2020). Impact of climate change on rainfall distribution on cassava yield in coastal and upland areas of Akwa Ibom State. Nigeria. Journal of Experimental Agriculture International, 42(5), 44–53.

    Google Scholar 

  • Lakra, N., Gauraha, A. K., Chandrakar, M. R., & Banafar, K. N. S. (2018). An economics of production of sweet potato in Bastar Plateau of Chhattisgarh. Plant Archives, 18(2), 1463–1465.

    Google Scholar 

  • Martin, G. M., Bellouin, N., Collins, W. J., et al. (2011). The HadGEM2 family of Met Office Unified Model climate configurations. Geoscientific Model Development, 4, 723–757.

    Article  Google Scholar 

  • Mupakati, T., & Tanyanyiwa, V.I. (2017). Cassava production as a climate change adaptation strategy in Chilonga Ward, Chiredzi District, Zimbabwe, Jàmbá: Journal of Disaster Risk Studies, 9(1), a348. https://doi.org/10.4102/jamba.v9i1.348

  • Musayev, S., Burgess, E., & Mellor, J. (2018). A global performance assessment of rainwater harvesting under climate change. Resources, Conservation and Recycling, 132, 62–70.

    Article  Google Scholar 

  • Mussoline, W. A., & Wilkie, A. C. (2017). Feed and fuel: the dual-purpose advantage of an industrial sweet potato. Journal of the Science of Food and Agriculture, 97(5):1567–1575.

  • Narayan, A., Prasad, R., Singh, P. P., & Singh, R. S. (2018). Elephant foot yam: Money spinning tuber crop for doubling farmer’s income of Bihar. International Journal of Current Microbiology and Applied Sciences, 7, 1014–1021.

    Google Scholar 

  • Olapade-Ogunwole, & Folayimi. (2019). Effect of climate change on selected tuber crops (sweet potato and yam) in Nigeria. International Journal of Research and Scientific Innovation, VI(IX), ISSN 2321–2705.

  • Pipitpukdee, S., Attavanich, W., & Bejranonda, S. (2020). Impact of climate change on land use, yield and production of cassava in Thailand. Agriculture, 10, 402.

    Article  Google Scholar 

  • Pushpalatha, R., & Gangadharan, B. (2020). Is cassava climate a climate smart crop? A review in the context of bridging future food demand gap. Tropical Plant Biology, 13, 201–2011.

    Article  CAS  Google Scholar 

  • Raju, J., & Byju, G. (2019). Quantitative determination of NPK uptake requirements of taro. Journal of Plant Nutrition, 42(3), 203–217.

    Article  CAS  Google Scholar 

  • Ravi, V., Ravindran, C. S., Suja, G., George, J., Nedunchezhiyan, M., Byju, G., & Naskar, S. K. (2011). Crop physiology of elephant foot yam [Amorphophallus paeoniifolius (Dennst. Nicolson)]. Advances in Horticultural Science, 25(1): 51–63.

  • Remya, K. R., Byju, G., Sabitha, S., Raju, S., & Ravi, V. (2019). Future changes in mean temperature and total precipitation and climate suitability of yam in major yam growing environments in India. Current Horticulture, 7(1), 28–42.

    Article  Google Scholar 

  • Runion, G. B., Prior, S. A., Monday, T. A., & Ryan-Bohac, J. (2018). Effects of elevated CO2 on growth of the industrial sweet potato cultivar CX-1. Environmental Control in Biology, 56(2), 89–92.

    Article  CAS  Google Scholar 

  • Samuel, E. T., Ogonna, O. O., & Samuel, A. E. (2018). Effects of climate change on yam production in Cross river state, Nigeria. International Journal of Agriculture and Forestry, 8(2), 104–111.

    Google Scholar 

  • Santhosh Mithra, V. S., Sreekumar, J., & Ravindran, C. S. (2012). Computer simulation of cassava growth: A tool for realizing the potential yield. Archives of Agronomy and Soil Science. https://doi.org/10.1080/03650340.2011.653681

    Article  Google Scholar 

  • Saseendran, S. A., Singh, K. K., Rathore, L. S., Singh, S. V., & Sinha, S. K. (2000). Effects of climate change on rice production in the tropical humid climate of Kerala, India. Climatic Change, 44, 495–514.

    Article  Google Scholar 

  • Saxena, M., Kumar, P., Gupta, R. P., Bhargav. H,, Thakur, B., Reddy, N., Karale, M., Singh, R., & Gilotra, P. (2018). Horticultural Statistics at a glance. Government of India, Ministry of Agriculture and Farmer’s Welfare, Department of Agriculture, Horticulture Statistics Division 490.

  • Schmidt, H., Rast, S., Bunzel, F., et al. (2013). Response of the middle atmosphere to anthropogenic and natural forcings in the CMIP5 simulations with the Max Planck Institute Earth system model. Journal of Advances Model Earth Systems, 5, 98–116.

    Article  Google Scholar 

  • Semenov, M. A., Brooks, R. J., Barrow, E. M., & Richardson, C. W. (1998). Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Climate Research, 10, 95–107.

    Article  Google Scholar 

  • Semenov, M. A., & Porter, J. R. (1994). The implications and importance of non-linear responses in modelling of growth and development of wheat. In J. Grasman & G. van Straten (Eds.), Predictability and non-linear modelling in natural sciences and economics (pp. 157–171). Springer.

  • Sha, J., Li, X., & Wang, Z. L. (2019). Estimation of future climate change in cold weather areas with the LARS-WG model under CMIP5 scenarios. Theoretical and Applied Climatology, 137, 3027–3039. https://doi.org/10.1007/s00704-019-02781-4

    Article  Google Scholar 

  • Shagega, F. P., Munishi, S. E., & Kongo, V. M. (2020). Prediction of future climate in Ngerengere river catchment, Tanzania. Physics and Chemistry of the Earth, Parts A/b/c, 112, 200–209.

    Article  Google Scholar 

  • Singh, M. K., Mishra, S. K., Hashmi, M. K., Tripathi, P., & Singh, A. K. (2014). Simulating the rice crop response to various inputs using WOFOST model for Faizabad district of Uttar Pradesh. Journal of Agrometeorology, 16(I):125–130.

  • Sinha, A. K., & Singh, S. K. (2019). Economics of potato production in Northern hills of Chhattisgarh. Economic Affairs, 64(1), 1–7.

    Article  Google Scholar 

  • Srivastava, A., Gaiser, T., & Ewert, F. (2016). Climate change impact and potential adaptation strategies under alternate climate scenarios for yam production in the sub-humid savannah zone of West Africa. Mitigation and Adaptation Strategies for Global Change, 21, 955–968.

    Article  Google Scholar 

  • Tatebe, H., Ishii, M., Mochizuki, T., et al. (2012). The initialization of the MIROC climate models with hydrographic data assimilation for decadal prediction. Journal of Meteorological Society of Japan, 90A, 275–294.

    Google Scholar 

  • Taylor, M., Lebot, V., McGregor, A., & Redden, R. J. (2018). Sustainable production of roots and tuber crops for food security under climate change. In S. S. Yadav, R. J. Redden, J. L. Hatfield, A. W. Ebert, & D. Hunter (Eds.), Food security and climate change (pp. 359–376). Wiley.

  • Wolf, J. (2003). Calibration of WOFOST crop growth simulation model for use within CGMS. Wageningen University. http://www.wofost.wur.nl

  • Xie, X., Zhang, T., Wang, L., & Huang, Z. (2017). Regional water footprints of potential biofuel production in China. Biotechnology for Biofuels, 10, 95.

    Article  Google Scholar 

  • Yu, J., Dan, S., Dongjing, Y., Tingting, D., Zhonghou, T., Hongmin, L., Yonghua, H., Zongyun, L., & Baohong, Z. (2020). Chilling and heat stress-induced physiological changes and microRNA-related mechanism in sweet potato. Frontier Plant Science. https://doi.org/10.3389/fpls.2020.00687

Download references

Acknowledgements

We are thankful to Women Scientist Scheme, Department of Science & Technology, India (DST WOS-A); ICAR-Central Tuber Crops Research Institute (ICAR-CTCRI), Thiruvananthapuram, India; All India Coordinated Research Project on Tuber Crops (AICRP-TC) for the complete support to fulfill this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byju Gangadharan.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushpalatha, R., Santhosh Mithra, V., Sunitha, S. et al. Impact of climate change on the yield of tropical root and tuber crops vs. rice and potato in India. Food Sec. 14, 495–508 (2022). https://doi.org/10.1007/s12571-021-01226-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12571-021-01226-z

Keywords

Navigation