Skip to main content
Log in

Reactive transport modeling of long-term CO2 sequestration mechanisms at the Shenhua CCS demonstration project, China

  • Experimental Geochemistry and Computational Geochemistry
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Carbon dioxide injection into deep saline aquifers results in a variety of strongly coupled physical and chemical processes. In this study, reactive transport simulations using a 2-D radial model were performed to investigate the fate of the injected CO2, the effect of CO2-water-rock interactions on mineral alteration, and the long-term CO2 sequestration mechanisms of the Liujiagou Formation sandstone at the Shenhua CCS (carbon capture and storage) pilot site of China. Carbon dioxide was injected at a constant rate of 0.1 Mt/year for 30 years, and the fluid flow and geochemical transport simulation was run for a period of 10 000 years by the TOUGHREACT code according to the underground conditions of the Liujiagou Formation. The results show that different trapping phases of CO2 vary with time. Sensitivity analyses indicate that plagioclase composition and chlorite presence are the most significant determinants of stable carbonate minerals and CO2 mineral trapping capacity. For arkosic arenite in the Liujiagou Formation, CO2 can be immobilized by precipitation of ankerite, magnesite, siderite, dawsonite, and calcite for different mineral compositions, with Ca2+, Mg2+, Fe2+ and Na+ provided by dissolution of calcite, albite (or oligoclase) and chlorite. This study can provide useful insights into the geochemistry of CO2 storage in other arkosic arenite (feldspar rich sandstone) formations at other pilots or target sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amin, S. M., Weiss, D. J., Blunt, M. J., 2014. Reactive Transport Modelling of Geologic CO2 Sequestration in Saline Aquifers: The Influence of Pure CO2 and of Mixtures of CO2 with CH4 on the Sealing Capacity of Cap Rock at 37 °C and 100 bar. Chemical Geology, 367: 39–50. doi:10.1016/j.chemgeo.2014.01.002

    Article  Google Scholar 

  • André, L., Audigane, P., Azaroual, M., et al., 2007. Numerical Modeling of Fluid-Rock Chemical Interactions at the Supercritical CO2-Liquid Interface during CO2 Injection into a Carbonate Reservoir, the Dogger Aquifer (Paris Basin, France). Energy Conversion and Management, 48(6): 1782–1797. doi:10.1016/j.enconman.2007.01.006

    Article  Google Scholar 

  • Assayag, N., Matter, J., Ader, M., et al., 2009. Water-Rock Interactions during a CO2 Injection Field-Test: Implications on Host Rock Dissolution and Alteration Effects. Chemical Geology, 265(1–2): 227–235. doi:10.1016/j.chemgeo.2009.02.007

    Article  Google Scholar 

  • Bacci, G., Korre, A., Durucan, S., 2011. An Experimental and Numerical Investigation into the Impact of Dissolution/Precipitation Mechanisms on CO2 Injectivity in the Wellbore and Far Field Regions. International Journal of Greenhouse Gas Control, 5(3): 579–588. doi:10.1016/j.ijggc.2010.05.007

    Article  Google Scholar 

  • Bachu, S., 2000. Sequestration of CO2 in Geological Media: Criteria and Approach for Site Selection in Response to Climate Change. Energy Conversion and Management, 41(9): 953–970. doi:10.1016/s0196-8904(99)00149-1

    Article  Google Scholar 

  • Balashov, V. N., Guthrie, G. D., Hakala, J. A., et al., 2013. Predictive Modeling of CO2 Sequestration in Deep Saline Sandstone Reservoirs: Impacts of Geochemical Kinetics. Applied Geochemistry, 30(2): 41–56. doi:10.1016/j.apgeochem.2012.08.016

    Article  Google Scholar 

  • Bertier, P., Swennen, R., Laenen, B., et al., 2006. Experimental Identification of CO2-Water-Rock Interactions Caused by Sequestration of CO2 in Westphalian and Buntsandstein Sandstones of the Campine Basin (NE-Belgium). Journal of Geochemical Exploration, 89(1–3): 10–14. doi:10.1016/j.gexplo.2005.11.005

    Article  Google Scholar 

  • British Petroleum (BP), 2010. BP Statistical Review of World Energy 2010. BP Plc, British China Shenhua Coal to Liquid Chemical Engineering Company, 2014. The Operation Report of the Shenhua 0.1 Mt CCS Demonstration Project, Ordos (in Chinese)

  • Corey, A. T., 1954. The Interrelation between Gas and Oil Relative Permeabilities. Producers Monthly, 19(1): 38–41

    Google Scholar 

  • Credoz, A., Bildstein, O., Jullien, M., et al., 2009. Experimental and Modeling Study of Geochemical Reactivity between Clayey Caprocks and CO2 in Geological Storage Conditions. Energy Procedia, 1(1): 3445–3452. doi:10.1016/j.egypro.2009.02.135

    Article  Google Scholar 

  • Eiken, O., Ringrose, P., Hermanrud, C., et al., 2011. Lessons Learned from 14 Years of CCS Operations: Sleipner, in Salah and Snøhvit. Energy Procedia, 4: 5541–5548. doi:10.1016/j.egypro.2011.02.541

    Article  Google Scholar 

  • Gaus, I., Audigane, P., André, L., et al., 2008. Geochemical and Solute Transport Modelling for CO2 Storage, What to Expect from It?. International Journal of Greenhouse Gas Control, 2(4): 605–625. doi:10.1016/j.ijggc.2008.02.011

    Article  Google Scholar 

  • Gaus, I., Azaroual, M., Czernichowski-Lauriol, I., 2005. Reactive Transport Modelling of the Impact of CO2 Injection on the Clayey Cap Rock at Sleipner (North Sea). Chemical Geology, 217(3–4): 319–337. doi:10.1016/j.chemgeo.2004.12.016

    Article  Google Scholar 

  • Goddéris, Y., Williams, J. Z., Schott, J., et al., 2010. Time Evolution of the Mineralogical Composition of Mississippi Valley Loess over the Last 10 kyr: Climate and Geochemical Modeling. Geochimica et Cosmochimica Acta, 74(22): 6357–6374. doi:10.1016/j.gca.2010.08.023

    Article  Google Scholar 

  • Goodarzi, S., Settari, A., Keith, D., 2012. Geomechanical Modeling for CO2 Storage in Nisku Aquifer in Wabamun Lake Area in Canada. International Journal of Greenhouse Gas Control, 10(10): 113–122. doi:10.1016/j.ijggc.2012.05.020

    Article  Google Scholar 

  • Hellevang, H., Aagaard, P., Oelkers, E. H., et al., 2005. Can Dawsonite Permanently Trap CO2?. Environmental Science & Technology, 39(21): 8281–8287. doi:10.1021/es0504791

    Article  Google Scholar 

  • Hermanrud, C., Andresen, T., Eiken, O., et al., 2009. Storage of CO2 in Saline Aquifers-Lessons Learned from 10 Years of Injection into the Utsira Formation in the Sleipner Area. Energy Procedia, 1(1): 1997–2004. doi:10.1016/j.egypro.2009.01.260

    Article  Google Scholar 

  • Hou, G. C., Zhang, M. S., Liu, F., 2008. The Ordos Basin Groundwater Investigation Research. Geological Publishing House, Beijing (in Chinese)

  • IEA, 2008. CO2 Capture and Storage: A Key Carbon Abatement Option. OECD Publishing, Paris. doi:10.1787/9789264041417-en

  • IPCC, 2005. IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. In: Metz, B., Davidson, O., de Coninck, H. C., et al., eds., Cambridge University Press, Cambridge. 442

  • Izgec, O., Demiral, B., Bertin, H., et al., 2008. CO2 Injection into Saline Carbonate Aquifer Formations II: Comparison of Numerical Simulations to Experiments. Transport in Porous Media, 73(1): 57–74. doi:10.1007/s11242-007-9160-1

    Article  Google Scholar 

  • Kampman, N., Bickle, M., Wigley, M., et al., 2014. Fluid Flow and CO2-Fluid-Mineral Interactions during CO2-Storage in Sedimentary Basins. Chemical Geology, 369(14): 22–50. doi:10.1016/j.chemgeo.2013.11.012

    Article  Google Scholar 

  • Kharaka, Y. K., Cole, D. R., Hovorka, S. D., et al., 2006. Gas-Water-Rock Interactions in Frio Formation Following CO2 Injection: Implications for the Storage of Greenhouse Gases in Sedimentary Basins. Geology, 34(7): 577–580. doi:10.1130/g22357a.1

    Article  Google Scholar 

  • Kharaka, Y. K., Thordsen, J. J., Hovorka, S. D., et al., 2009. Potential Environmental Issues of CO2 Storage in Deep Saline Aquifers: Geochemical Results from the Frio-I Brine Pilot Test, Texas, USA. Applied Geochemistry, 24(6): 1106–1112. doi:10.1016/j.apgeochem.2009.02.010

    Article  Google Scholar 

  • Kihm, J. H., Kim, J. M., Wang, S., et al., 2012. Hydrogeochemical Numerical Simulation of Impacts of Mineralogical Compositions and Convective Fluid Flow on Trapping Mechanisms and Efficiency of Carbon Dioxide Injected into Deep Saline Sandstone Aquifers. Journal of Geophysical Research: Solid Earth, 117(B6): 6204. doi:10.1029/2011jb008906

    Article  Google Scholar 

  • Li, D. S., 2004. Return to Petroleum Geology of Ordos Basin. Petroleum Exploration & Development, 31(6): 1–7 (in Chinese with English Abstract)

    Google Scholar 

  • Li, Q., Liu, G. Z., Liu, X. H., et al., 2013. Application of a Health, Safety, and Environmental Screening and Ranking Framework to the Shenhua CCS Project. International Journal of Greenhouse Gas Control, 17(5): 504–514. doi:10.1016/j.ijggc.2013.06.005

    Article  Google Scholar 

  • Li, X. Q., Hou, D. J., Hu, G. Y., 2005. Formation Fluid Characteristics and Gas Accumulation of the Central Gas Field of Ordos Basin. Geological Publishing House, Beijing (in Chinese)

  • Liu, H. J., Hou, Z. M., Were, P., et al., 2015. Modelling CO2-Brine-Rock Interactions in the Upper Paleozoic Formations of Ordos Basin Used for CO2 Sequestration. Environmental Earth Sciences, 73(5): 2205–2222. doi:10.1007/s12665-014-3571-4

    Article  Google Scholar 

  • Liu, N. N., Liu, L., Ming, X. R., et al., 2014. Petrologic and Geochemical Characteristics and Carbon Sequestration Capability of the Permian Shiqianfeng Formation around Ejin Horo Banner of Ordos Basin. Acta Petrologica et Mineralogica, 33(2): 255–262 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, N., Liu, L., Qu, X. Y., et al., 2011. Genesis of Authigene Carbonate Minerals in the Upper Cretaceous Reservoir, Honggang Anticline, Songliao Basin: A Natural Analog for Mineral Trapping of Natural CO2 Storage. Sedimentary Geology, 237(3/4): 166–178. doi:10.1016/j.sedgeo.2011.02.012

    Article  Google Scholar 

  • Lu, J. M., Kharaka, Y. K., Thordsen, J. J., et al., 2012. CO2-Rock-Brine Interactions in Lower Tuscaloosa Formation at Cranfield CO2 Sequestration Site, Mississippi, U.S.A.. Chemical Geology, 291(1): 269–277. doi:10.1016/j.chemgeo.2011.10.020

    Article  Google Scholar 

  • Lu, J., Kordi, M., Hovorka, S. D., et al., 2013. Reservoir Characterization and Complications for Trapping Mechanisms at Cranfield CO2 Injection Site. International Journal of Greenhouse Gas Control, 18(7): 361–374. doi:10.1016/j.ijggc.2012.10.007

    Article  Google Scholar 

  • Lu, P., Fu, Q., Seyfried, W. E., et al., 2011. Navajo Sandstone-Brine-CO2 Interaction: Implications for Geological Carbon Sequestration. Environmental Earth Sciences, 62(1): 101–118. doi:10.1007/s12665-010-0501-y

    Article  Google Scholar 

  • Luengen, H. B., Endemann, G., Schmö le, P., 2011. Measures to Reduce CO2 and Other Emissions in the Steel Industry in Germany and Europe. World Iron & Steel, 16(5): 42–50

    Google Scholar 

  • Mitiku, A. B., Li, D., Bauer, S., et al., 2013. Geochemical Modelling of CO2-Water-Rock Interactions in a Potential Storage Formation of the North German Sedimentary Basin. Applied Geochemistry, 36(3): 168–186. doi:10.1016/j.apgeochem.2013.06.008

    Article  Google Scholar 

  • Moore, J., Adams, M., Allis, R., et al., 2005. Mineralogical and Geochemical Consequences of the Long-Term Presence of CO2 in Natural Reservoirs: An Example from the Springerville-St. Johns Field, Arizona, and New Mexico, U.S.A.. Chemical Geology, 217(3/4): 365–385. doi:10.1016/j.chemgeo.2004.12.019

    Google Scholar 

  • Oelkers, E. H., Gislason, S. R., Matter, J., 2008. Mineral Carbonation of CO2. Elements, 4(5): 333–337. doi:10.2113/gselements.4.5.333

    Article  Google Scholar 

  • Okuyama, Y., Todaka, N., Sasaki, M., et al., 2013. Reactive Transport Simulation Study of Geochemical CO2 Trapping on the Tokyo Bay Model–With Focus on the Behavior of Dawsonite. Applied Geochemistry, 30(2): 57–66. doi:10.1016/j.apgeochem.2012.07.009

    Article  Google Scholar 

  • Olajire, A. A., 2013. A Review of Mineral Carbonation Technology in Sequestration of CO2. Journal of Petroleum Science and Engineering, 109: 364–392. doi:10.1016/j.petrol.2013.03.013

    Article  Google Scholar 

  • Petroleum Geology Group of Oilfield, 1992. Petroleum Geology of China (Vol. 12) Changqing Oil Field. Petroleum Industry Press, Beijing. 490 (in Chinese)

  • Rosenbauer, R. J., Koksalan, T., Palandri, J. L., 2005. Experimental Investigation of CO2-Brine-Rock Interactions at Elevated Temperature and Pressure: Implications for CO2 Sequestration in Deep-Saline Aquifers. Fuel Processing Technology, 86(14/15): 1581–1597. doi:10.1016/j.fuproc.2005.01.011

    Article  Google Scholar 

  • Tambach, T. J., Koenen, M., Wasch, L. J., et al., 2015. Geochemical Evaluation of CO2 Injection and Containment in a Depleted Gas Field. International Journal of Greenhouse Gas Control, 32: 61–80. doi:10.1016/j.ijggc.2014.10.005

    Article  Google Scholar 

  • Thomas, M. W., Stewart, M., Trotz, M., et al., 2012. Geochemical Modeling of CO2 Sequestration in Deep, Saline, Dolomitic-Limestone Aquifers: Critical Evaluation of Thermodynamic Sub-Models. Chemical Geology, 306/307: 29–39. doi:10.1016/j.chemgeo.2012.02.019

  • Trémosa, J., Castillo, C., Vong, C. Q., et al., 2014. Long-Term Assessment of Geochemical Reactivity of CO2 Storage in Highly Saline Aquifers: Application to Ketzin, In Salah and Snøhvit Storage Sites. International Journal of Greenhouse Gas Control, 20: 2–26. doi:10.1016/j.ijggc.2013.10.022

    Article  Google Scholar 

  • van Genuchten, M. T. V., 1980. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5): 892–898. doi:10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  • Wang, H. Y., 2012. Study on the Interaction of CO2 Fluid with Sandstone in Shiqianfeng: [Dissertation]. Jilin University, Changchun (in Chinese with English Abstract)

    Google Scholar 

  • Wang, L., Shen, Z. L., Hu, L. S., et al., 2014. Modeling and Measurement of CO2 Solubility in Salty Aqueous Solutions and Application in the Erdos Basin. Fluid Phase Equilibria, 377: 45–55. doi:10.1016/j.fluid.2014.06.016

    Article  Google Scholar 

  • Wang, Y. S., 2014. The Research Report of the Shenhua 0.1 Mt CCS Demonstration Project. China Shenhua Coal Liquefaction Co., Ltd., Ordos. Unpulished Results (in Chinese)

    Google Scholar 

  • Wang, Y., Crandall, D., Bruner, K., et al., 2013. Core and Pore Scale Characterization of Liujiagou Outcrop Sandstone, Ordos Basin, China for CO2 Aquifer Storage. Energy Procedia, 37: 5055–5062. doi:10.1016/j.egypro.2013.06.419

    Article  Google Scholar 

  • Watson, M. N., Zwingmann, N., Lemon, N. M., 2004. The Ladbroke Grove-Katnook Carbon Dioxide Natural Laboratory: A Recent CO2 Accumulation in a Lithic Sandstone Reservoir. Energy, 29(9/10): 1457–1466. doi:10.1016/j.energy.2004.03.079

    Article  Google Scholar 

  • White, S. P., Allis, R. G., Moore, J., et al., 2005. Simulation of Reactive Transport of Injected CO2 on the Colorado Plateau, Utah, U.S.A.. Chemical Geology, 217(3/4): 387–405. doi:10.1016/j.chemgeo.2004.12.020

    Article  Google Scholar 

  • Whittaker, S., Rostron, B., Hawkes, C., et al., 2011. A Decade of CO2 Injection into Depleting Oil Fields: Monitoring and Research Activities of the IEA GHG Weyburn-Midale CO2 Monitoring and Storage Project. Energy Procedia, 4: 6069–6076. doi:10.1016/j.egypro.2011.02.612

    Article  Google Scholar 

  • Wigand, M., Carey, J. W., Schü tt, H., et al., 2008. Geochemical Effects of CO2 Sequestration in Sandstones under Simulated In-Situ Conditions of Deep Saline Aquifers. Applied Geochemistry, 23(9): 2735–2745. doi:10.1016/j.apgeochem.2008.06.006

    Article  Google Scholar 

  • Wolery, T. J., 1992. Software Package for Geochemical Modeling of Aqueous System: Package Overview and Installation Guide (Version 8.0). Lawrence Livermore National Laboratory Report UCRL-MA-110662 PT I, Livermore, California, U.S.A.

    Book  Google Scholar 

  • Wu, X. Z., 2013. Carbon Dioxide Capture and Geological Storage: The First Massive Exploration in China. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Xie, H. P., Li, X. C., Fang, Z. M., et al., 2014. Carbon Geological Utilization and Storage in China: Current Status and Perspectives. Acta Geotechnica, 9(1): 7–27. doi:10.1007/s11440013-0277-9

    Article  Google Scholar 

  • Xu, T. F., Apps, J. A., Pruess, K., 2004. Numerical Simulation of CO2 Disposal by Mineral Trapping in Deep Aquifers. Applied Geochemistry, 19(6): 917–936. doi:10.1016/j.apgeochem.2003.11.003

    Article  Google Scholar 

  • Xu, T. F., Kharaka, Y. K., Doughty, C., et al., 2010. Reactive Transport Modeling to Study Changes in Water Chemistry Induced by CO2 Injection at the Frio-I Brine Pilot. Chemical Geology, 271(3/4): 153–164. doi:10.1016/j.chemgeo.2010.01.006

    Article  Google Scholar 

  • Xu, T. F., Apps, J. A., Pruess, K., 2005. Mineral Sequestration of Carbon Dioxide in a Sandstone-Shale System. Chemical Geology, 217(3/4): 295–318. doi:10.1016/j.chemgeo.2004.12.015

    Article  Google Scholar 

  • Xu, T. F., Sonnenthal, E., Spycher, N., et al., 2006. TOUGHREACT—A Simulation Program for Non-Isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media: Applications to Geothermal Injectivity and CO2 Geological Sequestration. Computers & Geosciences, 32(2): 145–165. doi:10.1016/j.cageo.2005.06.014

    Article  Google Scholar 

  • Xu, T. F., Spycher, N., Sonnenthal, E., et al., 2012. TOUGHREACT User’s Guide: A Simulation Program for Non-Isothermal Multiphase Reactive Transport in Variably Saturated Geologic Media, Version 2.0. Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA94720

    Google Scholar 

  • Yang, G. D., Li, Y. L., Cheng, P., et al., 2011. Assessment of CO2 Geological Storage Potential of Some Sedimentary Basins in China (Poster). 2011 GCEP Research Symposium: Addressing the Changing Energy Landscape. Stanford University, Stanford

  • Yang, G. D., Li, Y. L., Ma, X., et al., 2014. Effect of Chlorite on CO2-Water-Rock Interaction. Earth Science–Journal of China University of Geosciences, 39(4): 462–472. doi:10.3799/dqkx.2014.044 (in Chinese with English Abstract)

    Article  Google Scholar 

  • Zhang, S., DePaolo, D. J., Xu, T. F., et al., 2013. Mineralization of Carbon Dioxide Sequestered in Volcanogenic Sandstone Reservoir Rocks. International Journal of Greenhouse Gas Control, 18: 315–328. doi:10.1016/j.ijggc.2013.08.001

    Article  Google Scholar 

  • Zhang, W., Li, Y. L., Xu, T. F., et al., 2009. Long-Term Variations of CO2 Trapped in Different Mechanisms in Deep Saline Formations: A Case Study of the Songliao Basin, China. International Journal of Greenhouse Gas Control, 3(2): 161–180. doi:10.1016/j.ijggc.2008.07.007

    Article  Google Scholar 

  • Zhao, R. R., Cheng, J. M., 2016. Using Hydraulic Barrier Control CO2 Plume Migration in Sloping Reservoir. Earth Science–Journal of China University of Geosciences, 41(4): 675–682 (in Chinese with English Abstract)

    Article  Google Scholar 

  • Zhu, H. T., Liu, K. Y., Yang, X. H., et al., 2013. Sedimentary Controls on the Sequence Stratigraphic Architecture in Intra-Cratonic Basins: An Example from the Lower Permian Shanxi Formation, Ordos Basin, Northern China. Marine and Petroleum Geology, 45: 42–54. doi:10.1016/j.marpetgeo.2013.04.0

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Global Climate and Energy Project (No. 2384638-43106-A), the National Natural Science Foundation of China (No. 41072180), the Special Scientific Research Fund of Public Welfare Profession of the Ministry of Land and Resources of China (No. 201211063), and a bilateral project of China Australia Geological Storage of CO2 Project Phase 2 (CAGS2). We would like to thank Dr. Sizhen Peng, Jiutian Zhang (The Administrative Centre for China’s Agenda 21) and Maoshan Chen (The Shenhua Group Corporation Limited) for their insightful suggestions on the manuscript. Two anonymous reviewers are also gratefully acknowledged. The final publication is available at Springer via http://dx.doi.org/10.1007/s12583-016-0919-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilian Li.

Additional information

http://orcid.org/0000-0002-6857-1163

http://orcid.org/0000-0002-4192-5371

Yang, G. D., Li, Y. L., Atrens, A., et al., 2017. Reactive Transport Modeling of Long-Term CO2 Sequestration Mechanisms at the Shenhua CCS Demonstration Project, China. Journal of Earth Science, 28(3): 457-472. doi:10.1007/s12583-016-0919-6. http://en.earth-science.net

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Li, Y., Atrens, A. et al. Reactive transport modeling of long-term CO2 sequestration mechanisms at the Shenhua CCS demonstration project, China. J. Earth Sci. 28, 457–472 (2017). https://doi.org/10.1007/s12583-016-0919-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-016-0919-6

Key words

Navigation