Skip to main content
Log in

Main Mechanism for Generating Overpressure in the Paleogene Source Rock Series of the Chezhen Depression, Bohai Bay Basin, China

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The Chezhen depression, located in the south of Bohai Bay Basin, is an oil-producing basin in China. The third and fourth members of the Shahejie Formation (Es3 and Es4) are the main source rock series in the Chezhen depression. Widespread overpressures occurred in the Es3 and Es4 from the depths of approximately 2 000 to 4 600 m, with the maximum pressure coefficient of 1.98 from drillstem tests (DST). Among the sonic, resistivity and density logs, sonic-log is the only reliable pressure indicator and can be used to predict the pore pressure with Eaton’s method. All the overpressured mudstones in the source rock series have higher acoustic traveltimes compared with normally pressured mudstones at a given depth. The overpressured mudstones in the Es3 and Es4 units are characterized by a normal geothermal gradient, high average density values up to 2.5 g/cm3, strong present-day hydrocarbon generation capability, abundant mature organic matter and high contents of residual hydrocarbons estimated by the Rock-Eval S1 values and chloroform-soluble bitumen “A” values. All suggest that the dominant mechanism for overpressure in the mudstones of source rock series in the Chezhen depression is hydrocarbon generation. A comparison between the matrix porosity of the normally pressured sandstones and overpressured sandstones, the quantitative evaluation of porosity loss caused by compaction and the conventional thin section inspection demonstrate that the sandstones in the Chezhen depression were normally compacted. The high contents of hydrocarbons in the overpressured reservoirs prove that the overpressure in the sandstones of the source rock series was caused by pressure transmission from the source rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anissimov, L., 2001. Overpressure Phenomena in the Precaspian Basin. Petroleum Geoscience, 7(4): 389–394. https://doi.org/10.1144/petgeo.7.4.389

    Article  Google Scholar 

  • Berry, F., 1973. High Fluid Potentials in California Coast Ranges and Their Tectonic Significance. AAPG Bulletin, 57(7): 1219–1249

    Google Scholar 

  • Bethke, C. M., 1989. Modeling Subsurface Flow in Sedimentary Basins. Geologische Rundschau, 78(1): 129–154. https://doi.org/10.1007/bf01988357

    Article  Google Scholar 

  • Bowers, G. L., Katsube, T. J., 2002. The Role of Shale Pore Structure on the Sensitivity of Wire-Line Logs to Overpressure, In: Huffman, A. R., Bowers, G. L., eds., Pressure Regimes in Sedimentary Basins and Their Prediction. AAPG Memoir, 76: 43–60

    Google Scholar 

  • Chang, C. Y., 1991. Geological Characteristics and Distribution Patterns of Hydrocarbon Deposits in the Bohai Bay Basin, East China. Marine and Petroleum Geology, 8(1): 98–106. https://doi.org/10.1016/0264-8172(91)90048-6

    Article  Google Scholar 

  • Chi, G., Lavoie, D., Bertrand, R., et al., 2010. Downward Hydrocarbon Migration Predicted from Numerical Modeling of Fluid Overpressure in the Paleozoic Anticosti Basin, Eastern Canada. Geofluids, 10(3): 334–350. https://doi.org/10.1111/j.1468-8123.2010.00280.x

    Article  Google Scholar 

  • Chilingar, G. V., Serebryakov, V. A., Robertson, J. O., 2002. Origin and Prediction of Abnormal Formation Pressures. Elsevier, Amsterdam. 55

    Google Scholar 

  • Deming, D., 1994. Factors Necessary to Define a Pressure Seal. AAPG Bulletin, 78(6): 1005–1009

    Google Scholar 

  • Dickinson, G., 1953. Geological Aspects of Abnormal Reservoir Pressures in Gulf Coast Louisiana. AAPG Bulletin, 37(2): 410–432

    Google Scholar 

  • Eaton, B. A., 1972. Graphical Method Predicts Geopressures Worldwide. World Oil, 182(1): 51–56

    Google Scholar 

  • Espitalié, J., Deroo, G., Marquis, F., 1986. La Pyrolyse Rock-Eval et Ses Applications. Troisième Partie. Revue de L'Institut Français Du Pétrole, 41(1): 73–89. https://doi.org/10.2516/ogst:1986003

    Article  Google Scholar 

  • Guo, X. W., He, S., Liu, K. Y., et al., 2010. Oil Generation as the Dominant Overpressure Mechanism in the Cenozoic Dongying Depression, Bohai Bay Basin, China. AAPG Bulletin, 94(12): 1859–1881. https://doi.org/10.1306/05191009179

    Article  Google Scholar 

  • Guo, X. W., He, S., Liu, K. Y., et al., 2011. Quantitative Estimation of Overpressure Caused by Oil Generation in Petroliferous Basins. Organic Geochemistry, 42(11): 1343–1350. https://doi.org/10.1016/j.orggeochem.2011.08.017

    Article  Google Scholar 

  • Guo, X.W., Liu, K.Y., He, S., et al., 2015. Quantitative Estimation of Overpressure Caused by Gas Generation and Application to the Baiyun depression in the Pearl River Mouth Basin, South China Sea. Geofluids, 16(1): 129–148. https://doi.org/10.1111/gfl.12140

    Article  Google Scholar 

  • Hansom, J., Lee, M. K., 2005. Effects of Hydrocarbon Generation, Basal Heat Flow and Sediment Compaction on Overpressure Development: A Numerical Study. Petroleum Geoscience, 11(4): 353–360. https://doi.org/10.1144/1354-079304-651

    Article  Google Scholar 

  • Hao, F., Dong, W. L., 2001. Evolution of Fluid Flow and Petroleum Accumulation in Overpressured Systems in Sedimentary Basins. Advance in Earth Sciences, 16(1): 79–85 (in Chinese with English Abstract)

    Google Scholar 

  • Hao, F., Zou, H. Y., Gong, Z. S., 2007. Hierarchies of Overpressure Retardation of Organic Matter Maturation. AAPG Bulletin, 91(10): 1467–1498. https://doi.org/10.1306/05210705161

    Article  Google Scholar 

  • He, S., He, Z. L., Yang Z., et al., 2009. Characteristics, Well-Log Responses and Mechanisms of Overpressures within the Jurassic Formation in the Central Part of Junggar Basin. Earth Science—Journal of China University of Geosciences, 34(3): 457–470 (in Chinese with English Abstract)

    Article  Google Scholar 

  • He, S., Song, G. Q., Wang, Y. S., et al., 2012. Distribution and Major Control Factors of the Present-Day Large-Scale Overpressured System in Dongying Depression. Earth Science—Journal of China University of Geosciences, 37(5): 1029–1042 (in Chinese with English Abstract)

    Google Scholar 

  • Hermanrud, C., Wensaas, L., Teige, G., et al., 1998. Shale Porosities from Well Logs on Haltenbanken (Offshore Mid-Norway) Show no Influence of Overpressuring. In: Law, B. E., ed., Abnormal Pressures in Hydrocarbon Environments. AAPG Memoir, 70: 65–85

    Google Scholar 

  • Hunt, J. M., 1990. Generation and Migration of Petroleum from Abnormally Pressured Fluid Compartments. AAPG Bulletin, 74(1): 1–12

    Google Scholar 

  • Jarvis, G. T., Mckenzie, D. P., 1980. Sedimentary Basin Formation with Finite Extension Rates. Earth Planetary Science Letters, 48(1): 42–52. https://doi.org/10.1016/0012-821x(80)90168-5

    Article  Google Scholar 

  • Jin, Q. Y., He, S., Lu, M., 2015. Relationship between Overpressures Characteristic and Hydrocarbon Enrichment in the Chezhen depression of Bohai Bay Basin. Geological Science and Technology Information, 34(3): 113–119 (in Chinese with English Abstract)

    Google Scholar 

  • Kukla, P. A., Reuning, L., Becker, S., et al., 2011. Distribution and Mechanisms of Overpressure Generation and Deflation in the Late Neoproterozoic to Early Cambrian South Oman Salt Basin. Geofluids, 11(4): 349–361. https://doi.org/10.1111/j.1468-8123.2011.00340.x

    Article  Google Scholar 

  • Law, B. E., Spencer, C. W., 1981. Abnormally High-Pressured, Low-Permeability, Upper Cretaceous and Tertiary Gas Reservoirs, Northern Green River Basin, Wyoming. AAPG Bulletin, 65(5): 948–948

    Google Scholar 

  • Law, B. E., Spencer, C. W., Bostick, N. H., 1980. Evaluation of Organic Matter, Subsurface Temperature and Pressure with Regards to Gas Generation in Low-Permeability Upper Cretaceous and Lower Tertiary Sandstones in Pacific Creek Area, Sublette and Sweetwater Counties, Wyoming. The Mountain Geologist, 17: 23–35

    Google Scholar 

  • Lee, M. K., Williams, D. D., 2000. Paleohydrology of the Delaware Basin, Western Texas: Overpressure Development, Hydrocarbon Migration, and Ore Genesis. AAPG Bulletin, 84(7): 961–974. https://doi.org/10.1306/a9673b80-1738-11d7-8645000102c1865d

    Google Scholar 

  • Lu, K. Z., Qi, J. F., Dai, J. S., et al., 1997.Tectonic Model of Cenozoic Petroliferous Basin Bohai Bay Province. Geological Publishing House, Beijing. 3–5 (in Chinese)

    Google Scholar 

  • Lundegard, P. D., 1992. “Sandstone Porosity Loss—A “Big Picture” View of the Importance of Compaction. Journal of Sedimentary Petrography, 62(2): 250–260. https://doi.org/10.1306/d42678d4-2b26-11d7-8648000102c1865d

    Article  Google Scholar 

  • Luo, M., Baker, M. R., Lemone, D. V., 1994. Distribution and Generation of the Overpressure System, Eastern Delaware Basin, Western Texas and Southern New Mexico. AAPG Bulletin, 78(9): 1386–1405. https://doi.org/10.1306/a25fecb1-171b-11d7-8645000102c1865d

    Google Scholar 

  • Luo, S. Y., He, S., Jin, Q. Y., et al., 2015. Overpressure System Classification and Structure Characteristic in Bonan Sag. Journal of Jilin University: Earth Science Edition, 45(1): 37–51 (in Chinese with English Abstract)

    Google Scholar 

  • Luo, X. R., 2000. The Application of Numerical Basin Modeling in Geological Studies. Petroleum Exploration and Development, 27(2): 6–10 (in Chinese with English Abstract)

    Google Scholar 

  • Luo, X. R., Vasseur, G., 1996. Geopressuring Mechanism of Organic Matter Cracking: Numerical Modeling. AAPG Bulletin, 80(6): 856–874. https://doi.org/10.1306/64ed88ea-1724-11d7-8645000102c1865d

    Google Scholar 

  • Luo, X. R., Wang, Z. M., Zhang, L. Q., et al., 2007. Overpressure Generation and Evolution in a Compressional Tectonic Setting, the Southern Margin of Junggar Basin, Northwestern China. AAPG Bulletin, 91(8): 1123–1139. https://doi.org/10.1306/02260706035

    Article  Google Scholar 

  • Ma, B. B., Cao, Y. C., Wang, Y. Z., et al., 2014. Formation Mechanism of High-Quality Reservoir in the Middle-Deep Strata in Palaeogene in the North Zone of Chezhen Depression. Journal of China University of Mining & Technology, 43(3): 448–457 (in Chinese with English Abstract)

    Google Scholar 

  • Magara, K., 1975. Reevaluation of Montmorillonite Dehydration as Cause of Abnormal Pressure and Hydrocarbon Migration. AAPG Bulletin, 59(2): 292–302

    Google Scholar 

  • Meissner, F. F., 1976. Abnormal Electric Resistivity and Fluid Pressure in Bakken Formation, Williston Basin, and Its Relation to Petroleum Generation, Migration, and Accumulation. AAPG Bulletin, 60(8): 1403–1404

    Google Scholar 

  • Meissner, F. F., 1978. Petroleum Geology of the Bakken Formation, Williston Basin, North Dakota and Montana. Williston Basin Symposium, 16(10): 207–227

    Google Scholar 

  • Mouchet, J. P., Mitchell, A., 1989. Abnormal Pressures while Drilling: Origins, Prediction, Detection, Evaluation. Editions Technip, Boussens. 255

    Google Scholar 

  • O’Conner, S., Swarbrick, R., Lahann, R., 2011. Geologically-Driven Pore Fluid Pressure Models and Their Implications for Petroleum Exploration. Introduction to Thematic Set. Geofluids, 11(4): 343–348

    Google Scholar 

  • Osborne, M. J., Swarbrick, R. E., 1997. Mechanisms for Generating Overpressure in Sedimentary Basins: A Reevaluation. AAPG Bulletin, 81(6): 1023–1041. https://doi.org/10.1306/522b49c9-1727-11d7-8645000102c1865d

    Google Scholar 

  • Robertson, J., Goulty, N. R., Swarbrick, R. E., 2013. Overpressure Distributions in Palaeogene Reservoirs of the UK Central North Sea and Implications for Lateral and Vertical Fluid Flow. Petroleum Geoscience, 19(3): 223–236. https://doi.org/10.1144/petgeo2012-060

    Article  Google Scholar 

  • Rubey, W. W., Hubbert, M. K., 1959. Role of Fluid Pressure in Mechanics of Overthrust Faulting, II. Overthrust Belt in Geosynclinal Area of Western Wyoming in Light of Fluid-Pressure Hypothesis. AAPG Bulletin, 70(2): 167–205

    Google Scholar 

  • Sharp, J. M., 1976. Momentum and Energy Balance Equations for Compacting Sediments. Journal of the International Association for Mathematical Geology, 98(3): 305–322. https://doi.org/10.1007/bf01029275

    Article  Google Scholar 

  • Shi, W. Z., Chen, H. H., Zhang, X. M., et al., 2005. Origin of Overpressure and Relation with Oil & Gas Pool-Forming in Yangxia Sag. Earth Science—Journal of China University of Geosciences, 30(2): 221–227 (in Chinese with English Abstract)

    Google Scholar 

  • Spencer, C. W., 1983. Overpressured Reservoirs in Rocky Mountain Region. AAPG Bulletin, 67(8): 1356–1357. https://doi.org/10.1306/03b5b9bb-16d1-11d7-8645000102c1865d

    Google Scholar 

  • Spencer, C. W., 1987. Hydrocarbon Generation as a Mechanism for Overpressure in Rocky Mountain Region. AAPG Bulletin, 71(14): 368–388. https://doi.org/10.1306/94886eb6-1704-11d7-8645000102c1865d

    Google Scholar 

  • Su, J. H., Zhu, W., Wei, J., et al., 2011. Fault Growth and Linkage: Implications for Tectonosedimentary Evolution in the Chezhen Basin of Bohai Bay, Eastern China. AAPG Bulletin, 95(1): 1–26. https://doi.org/10.1306/06301009207

    Article  Google Scholar 

  • Suwannasri, K., Promrak, W., Utitsan, S., et al., 2014. Reducing the Variation of Eaton’s Exponent for Overpressure Prediction in a Basin Affected by Multiple Overpressure Mechanisms. Interpretation, 2(1): SB57–SB68. https://doi.org/10.1190/int-2013-0100.1

    Book  Google Scholar 

  • Sweeney, J. J., Burnham, A. K., 1990. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics. AAPG Bulletin, 74(10): 1559–1570. https://doi.org/10.1306/0c9b251f-1710-11d7-8645000102c1865d

    Google Scholar 

  • Tingay, M. R. P., Hillis, R. R., Swarbrick, R. E., et al., 2009. Origin of Overpressure and Pore-Pressure Prediction in the Baram Province, Brunei. AAPG Bulletin, 93(1): 51–74. https://doi.org/10.1306/08080808016

    Article  Google Scholar 

  • van Ruth, P., Hillis, R., Tingate, P., et al., 2003. The Origin of Overpressure in ‘Old’ Sedimentary Basins: An Example from the Cooper Basin, Australia. Geofluids, 3(2): 125–131

    Article  Google Scholar 

  • van Ruth, P., Hillis, R., Tingate, P., 2004. The Origin of Overpressure in the Carnarvon Basin, Western Australia: Implications for Pore Pressure Prediction. Petroleum Geoscience, 10(3): 247–257

    Article  Google Scholar 

  • Wang, L. B., Xu, H. M., Liu, T. X., 2004. Character of Oil-Gas Accumulation in Double-Layer Structure Basins——Taking Tertiary in Chezhen Sag as an Example. Contributions to Geology and Mineral Resources Research, 19(2): 118–121 (in Chinese with English Abstract)

    Google Scholar 

  • Xie, X. N., Bethke, C., Li, S. T., et al., 2001. Overpressure and Petroleum Generation and Accumulation in the Dongying Depression of the Bohaiwan Basin, China. Geofluids, 1(4): 257–271. https://doi.org/10.1046/j.1468-8123.2001.00017.x

    Article  Google Scholar 

  • Xie, X. N., Liu, X. F., 2000. Related to Black Shale Series Fluid Dynamic System and Relationship with Accumulation of Hydrocarbon in Overpressured Basin. Bulletin of Mineralogy, Petrology and Geochemistry, 19(2): 103–108 (in Chinese with English Abstract)

    Google Scholar 

  • Yang, J., He, S., Wang, B. J., 2009. Characteristics and Prediction Model of the Overpressures in the Niuzhuang Sag of Dongying Depression. Geological Science and Technology Information, 28(4): 34–40 (in Chinese with English Abstract)

    Google Scholar 

  • Yang, R., He, S., Li, T. Y., 2016. Origin of Over-Pressure in Clastic Rocks in Yuanba Area, Northeast Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 30: 90–105. https://doi.org/10.1016/j.jngse.2016.01.043

    Article  Google Scholar 

  • Yassir, N. A., Bell, J. S., 1996. Abnormally High Fluid Pressures and Associated Porosities and Stress Regimes in Sedimentary Basins. SPE Formation Evaluation, 11(1): 5–10

    Article  Google Scholar 

  • Zhang, J. Z., Bi, C. Q., Wang, X. F., et al., 2005. Petroleum and Oil Geology and Exploratory Prospect of Chezhen Sag. Offshore Oil, 25(4): 6–10 (in Chinese with English Abstract)

    Google Scholar 

  • Zheng, Z. P., Song, G. Q., Liu, K. Y., 2008. Overpressure Mechanisms in Taoerhe Sag of Chezhen Depression. Geological Science and Technology Information, 27(6): 71–75 (in Chinese with English Abstract)

    Google Scholar 

  • Zhu, G. Y., Jin, Q., Zhang, S. C., et al., 2006. Hydrocarbon-Generation System of Eogene Shahejie Formation in Chezhen Sag. Natural Gas Industry, 26(3): 19–22 (in Chinese with English Abstract)

    Google Scholar 

Download references

Acknowledgements

This study was sponsored by the China National Science and Technology Major Project (No. 2016ZX05006003-001), the Programme of Introducing Talents of Discipline to Universities (No. B14031) and the National Natural Science Foundation of China (Nos. 41572114, 41302110). The SINOPEC Shengli Oilfield is thanked for providing background geological data and support. We are grateful to the editors and two anonymous reviewers for their constructive comments and suggestions. The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0959-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., He, S., Wang, Y. et al. Main Mechanism for Generating Overpressure in the Paleogene Source Rock Series of the Chezhen Depression, Bohai Bay Basin, China. J. Earth Sci. 30, 775–787 (2019). https://doi.org/10.1007/s12583-017-0959-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-017-0959-6

Key Words

Navigation