Skip to main content
Log in

Lie Group Analysis of Nanofluid Slip Flow with Stefan Blowing Effect via Modified Buongiorno’s Model: Entropy Generation Analysis

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

This article presents a detailed theoretical and computational analysis of alumina and titania-water nanofluid flow from a horizontal stretching sheet. At the boundary of the sheet (wall), velocity slip, thermal slip and Stefan blowing effects are considered. The Pak-Cho viscosity and thermal conductivity model is employed together with the non-homogeneous Buongiorno nanofluid model. The equations for mass, momentum, energy and nanoparticle species conservation are transformed via Lie-group transformations into a dimensionless system. The partial differential boundary value problem is therefore rendered into nonlinear ordinary differential form. With appropriate boundary conditions, the emerging normalized equations are solved with the semi-numerical homotopy analysis method (HAM). To consider entropy generation affects a second law thermodynamic analysis is also carried out. The impact of some physical parameters on the skin friction, Nusselt number, velocity, temperature and entropy generation number (EGM) are represented graphically. This analysis shows that diffusion parameter is a key factor to retards the friction and rate of heat transfer at the surface. Further, temperature of fluid decreases for the higher value of thermal slip parameter. In addition, EGM enhances with nanoparticles ambient concentration and Reynolds number. A numerical validation of HAM results is also included. The computations are relevant to thermodynamic optimization of nano-material processing operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C :

Nanoparticles concentration (–)

D B :

Brownian diffusion (m2/s)

D T :

Thermophoresis diffusion (m2/s)

D :

Ratio of thermophoresis and Brownian motion parameter

Ec :

Eckert number (–)

F :

Dimensionless stream function (–)

H :

Enthalpy (J)

K :

Thermal conductivity [W/(mK)]

Nur :

Nusselt number (–)

N 1 :

Velocity slip parameter (m)

N 2 :

Thermal slip parameter (m)

Pr:

Prandtl number (–)

q :

Embedding parameter (–)

R :

Gas constant [J/(molK)]

Re :

Reynolds number (–)

\( \phi \) :

Dimensionless concentration (–)

S g :

Volumetric rate of entropy generation [J/(Km3 s)]

S c :

Characteristic entropy [J/(Km3 s)]

Sc :

Schmidt number (–)

T :

Temperature (K)

u :

Velocity (m/s) along x-axis

v :

Velocity (m/s) along y-axis

\( \rho \) :

Density (kg/m3)

\( \mu \) :

Dynamic viscosity (Ns/m2)

\( \phi \) :

Concentration (–)

\( \psi \) :

Stream function (m2/s)

\( \upsilon \) :

Kinematic viscosity (m2/s)

\( \delta \) :

Thermal slip parameter (–)

\( \rho c \) :

Heat capacity [J/(Km3)]

\( \theta \) :

Dimensionless temperature (–)

\( \chi \) :

Diffusive constant (–)

\( \lambda_{1} \) :

Dimensionless velocity slip parameter

\( \lambda_{2} \) :

Dimensionless thermal slip parameter

\( \eta \) :

Similarity variable (–)

\( \infty \) :

Ambient condition

\( w \) :

Condition on surface

P :

Nanoparticles

nf :

Nanofluid

f :

Fluid

References

  1. Crane, L.J.: Flow past a stretching plate. Z. Für Angew. Math. Phys. ZAMP 21(4), 645–647 (1970)

    Article  Google Scholar 

  2. Choi, S.U.S., Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab., IL, ANL/MSD/CP-84938; CONF-951135-29 (1995)

  3. Eastman, J.A., Choi, U.S., Li, S., Thompson, L.J., Lee, S.: Enhanced thermal conductivity through the development of nanofluids, vol. 457. Fall Meet. Mater. Res. Soc. MRS, Boston (1996)

  4. Aybar, H.Ş., Sharifpur, M., Azizian, M.R., Mehrabi, M., Meyer, J.P.: A review of thermal conductivity models for nanofluids. Heat Transf. Eng. 36(13), 1085–1110 (2015)

    Article  Google Scholar 

  5. Rana, P., Shukla, N., Gupta, Y., Pop, I.: Analytical prediction of multiple solutions for MHD Jeffery-Hamel flow and heat transfer utilizing KKL nanofluid model. Phys. Lett. A 383, 176–185 (2018)

    Article  MathSciNet  Google Scholar 

  6. Sheikholeslami, M., Rokni, H.B.: CVFEM for effect of Lorentz forces on nanofluid flow in a porous complex shaped enclosure by means of non-equilibrium model. J. Mol. Liq. 254, 446–462 (2018)

    Article  Google Scholar 

  7. Sheikholeslami, M., Darzi, M., Sadoughi, M.K.: Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. Int. J. Heat Mass Transf. 122, 643–650 (2018)

    Article  Google Scholar 

  8. Sheikholeslami, M.: Numerical investigation for CuO-H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method. J. Mol. Liq. 249, 739–746 (2018)

    Article  Google Scholar 

  9. Sheikholeslami, M., Rokni, H.B.: Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int. J. Heat Mass Transf. 118, 823–831 (2018)

    Article  Google Scholar 

  10. Buongiorno, J.: Convective transport in nanofluids. ASME J. Heat Transf. 128(3), 240–250 (2006)

    Article  Google Scholar 

  11. Dhanai, R., Rana, P., Kumar, L.: Critical values in slip flow and heat transfer analysis of non-Newtonian nanofluid utilizing heat source/sink and variable magnetic field: multiple solutions. J. Taiwan Inst. Chem. Eng. 58, 155–164 (2016)

    Article  Google Scholar 

  12. Dhanai, R., Rana, P., Kumar, L.: MHD mixed convection nanofluid flow and heat transfer over an inclined cylinder due to velocity and thermal slip effects: Buongiorno’s model. Powder Technol. 288, 140–150 (2016)

    Article  Google Scholar 

  13. Kuznetsov, A.V., Nield, D.A.: Natural convective boundary-layer flow of a nanofluid past a vertical plate: a revised model. Int. J. Therm. Sci. 77, 126–129 (2014)

    Article  Google Scholar 

  14. Rana, P., Bhargava, R., Bég, O.A.: Numerical solution for mixed convection boundary layer flow of a nanofluid along an inclined plate embedded in a porous medium. Comput. Math. Appl. 64(9), 2816–2832 (2012)

    Article  MathSciNet  Google Scholar 

  15. Rana, P., Bhargava, R., Bég, O.A.: Finite element modeling of conjugate mixed convection flow of Al2O3–water nanofluid from an inclined slender hollow cylinder. Phys. Scr. 87(5), 1–15 (2013)

    Article  Google Scholar 

  16. Rashidi, M.M., Freidoonimehr, N., Hosseini, A., Bég, O.A., Hung, T.-K.: Homotopy simulation of nanofluid dynamics from a non-linearly stretching isothermal permeable sheet with transpiration. Meccanica 49(2), 469–482 (2014)

    Article  Google Scholar 

  17. Yang, C., Li, W., Nakayama, A.: Convective heat transfer of nanofluids in a concentric annulus. Int. J. Therm. Sci. 71, 249–257 (2013)

    Article  Google Scholar 

  18. Malvandi, A., Moshizi, S.A., Soltani, E.G., Ganji, D.D.: Modified Buongiorno’s model for fully developed mixed convection flow of nanofluids in a vertical annular pipe. Comput. Fluids 89, 124–132 (2014)

    Article  Google Scholar 

  19. Rana, P., Dhanai, R., Kumar, L.: MHD slip flow and heat transfer of Al2O3–water nanofluid over a horizontal shrinking cylinder using Buongiorno’s model: effect of nanolayer and nanoparticle diameter. Adv. Powder Technol. 28(7), 1727–1738 (2017)

    Article  Google Scholar 

  20. Yoshimura, A., Prud’homme, R.K.: Wall slip corrections for Couette and parallel disk viscometers. J. Rheol. 32(1), 53–67 (1988)

    Article  Google Scholar 

  21. Klein, S., Nellis, G.: Heat Transfer. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  22. Fang, T., Jing, W.: Flow, heat and species transfer over a stretching plate considering coupled Stefan blowing effects from species transfer. Commun. Nonlinear Sci. Numer. Simul. 19(9), 3086–3097 (2014)

    Article  MathSciNet  Google Scholar 

  23. Uddin, M.J., Kabir, M.N., Bég, O.A.: Computational investigation of Stefan blowing and multiple-slip effects on buoyancy-driven bioconvection nanofluid flow with microorganisms. Int. J. Heat Mass Transf. 95, 116–130 (2016)

    Article  Google Scholar 

  24. Latiff, N.A., Uddin, M.J., Ismail, A.I.M.: Stefan blowing effect on bioconvective flow of nanofluid over a solid rotating stretchable disk. Propuls. Power Res. 5(4), 267–278 (2016)

    Article  Google Scholar 

  25. Rana, P., Shukla, N., Beg, O.A., Kadir, A., Singh, B.: Unsteady electromagnetic radiative nanofluid stagnation-point flow from a stretching sheet with chemically reactive nanoparticles, Stefan blowing effect and entropy generation. Proc. Inst. Mech. Eng. Part N J. Nanomater. Nanoeng. Nanosyst. 232, 69–82 (2018)

    Google Scholar 

  26. Bejan, A.: Method of entropy generation minimization, or modeling and optimization based on combined heat transfer and thermodynamics. Rev. Générale Therm. 35(418), 637–646 (1996)

    Article  Google Scholar 

  27. Abolbashari, M.H., Freidoonimehr, N., Nazari, F., Rashidi, M.M.: Entropy analysis for an unsteady MHD flow past a stretching permeable surface in nano-fluid. Powder Technol. 267, 256–267 (2014)

    Article  Google Scholar 

  28. Butt, A.S., Munawar, S., Ali, A., Mehmood, A.: Entropy generation in the Blasius flow under thermal radiation. Phys. Scr. 85(3), 035008 (2012)

    Article  Google Scholar 

  29. Qing, J., Bhatti, M., Abbas, M., Rashidi, M., Ali, M.: Entropy generation on MHD Casson nanofluid flow over a porous stretching/shrinking surface. Entropy 18(4), 1–14 (2016)

    Article  Google Scholar 

  30. Bhatti, M., Abbas, T., Rashidi, M., Ali, M.: Numerical simulation of entropy generation with thermal radiation on MHD Carreau nanofluid towards a shrinking sheet. Entropy 18(6), 200 (2016)

    Article  MathSciNet  Google Scholar 

  31. Aïboud, S., Saouli, S.: Second law analysis of viscoelastic fluid over a stretching sheet subject to a transverse magnetic field with heat and mass transfer. Entropy 12(8), 1867–1884 (2010)

    Article  Google Scholar 

  32. Bhatti, M., et al.: Entropy generation on MHD Eyring–Powell nanofluid through a permeable stretching surface. Entropy 18(6), 224 (2016)

    Article  MathSciNet  Google Scholar 

  33. Liao, S.J.: Homotopy Analysis Method in Nonlinear Differential Equations. Higher Education Press, Beijing (2012)

    Book  Google Scholar 

  34. Mabood, F., Khan, W.A., Ismail, A.I.M.: MHD flow over exponential radiating stretching sheet using homotopy analysis method. J. King Saud Univ. Eng. Sci. 29(1), 68–74 (2017)

    Google Scholar 

  35. Abdallah, I.A.: Homotopy analytical solution of MHD fluid flow and heat transfer problem. Appl. Math. Inf. Sci. 3(2), 223–233 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Uddin, M.J., Alginahi, Y., Bég, O.A., Kabir, M.N.: Numerical solutions for gyrotactic bioconvection in nanofluid-saturated porous media with Stefan blowing and multiple slip effects. Comput. Math. Appl. 72(10), 2562–2581 (2016)

    Article  MathSciNet  Google Scholar 

  37. Pak, B.C., Cho, Y.I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. 11(2), 151–170 (1998)

    Article  Google Scholar 

  38. Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman and Hall/CRC Press, London/Boca Ratton (2003)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuj Bhardwaj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, P., Shukla, N., Bég, O.A. et al. Lie Group Analysis of Nanofluid Slip Flow with Stefan Blowing Effect via Modified Buongiorno’s Model: Entropy Generation Analysis. Differ Equ Dyn Syst 29, 193–210 (2021). https://doi.org/10.1007/s12591-019-00456-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-019-00456-0

Keywords

Navigation