Skip to main content
Log in

Geology, structural and exhumation history of the Higher Himalayan Crystallines in Kumaon Himalaya, India

  • Published:
Journal of the Geological Society of India

Abstract

The crystallines in the Kumaon Himalaya, India are studied along Goriganga, Darma and Kaliganga valleys and found to be composed of two high-grade metamorphic gneiss sheets i.e. the Higher Himalayan Crystalline (HHC) and Lesser Himalayan Crystalline (LHC) zones. These were tectonically extruded as a consequence of the southward directed propagation of crustal deformation in the Indian plate margin. The HHC and its cover rocks i.e. the Tethyan Sedimentary Zone (TSZ) are exposed through tectonic zones within the hinterland of Kumaon Himalaya. The HHC records history of at least one episode of pre-Himalayan deformation (D1), three episodes of Himalayan deformation (D2, D3, D4). The rocks of the HHC in Kumaon Himalaya are thoroughly transposed by D2 deformation into NW-SE trending Sm (S1+S2). The extent of transposition and a well-developed NE-plunging L2 lineation indicate intense strain during D2 throughout the studied portion of the HHC. Ductile flow continued, resulting in rotation of F1 and F2 folds due NE-direction and NW-SE plunging F3 folds within the HHC. The over thickened crystalline was finally, superimposed by late-to-post collisional brittle-ductile deformation (D4) and exposed the rocks to rapid erosion.

Apatite Fission Track (AFT) and Zircon Fission Track (ZFT) studies from the Kumaon Himalaya suggest reactivation of the Main Central/Munsiari Thrust (MCT/MT) and Vaikrita Thrust (VT), rapid exhumation and a system that has been in topographic and exhumation steady-state since at least 4 Ma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, T., Harris, N., Bickle, M., Chapman, H., Bunbury, J. and Prince, C. (2000) Isotopic constraints on the structural relationships between the Lesser himalayan Series and the High Himalayan Crystalline series, Garhwal Himalaya. Geol. Soc. Am. Bull., v.112, pp.467–477.

    Google Scholar 

  • Arita, K. (1983) Origin of inverted metamorphism of the lower Himalaya, Central Nepal. Tectonophysics, v.95, pp.43–60.

    Google Scholar 

  • Arita, K., Shiraishi, K. and Hayashi, D. (1984) Geology of the Western Nepal and a comparison with Kumaun, India. Jour. Faculty Sci., Hokkaido University, v.21(1), pp.1–20.

    Google Scholar 

  • Beaumont, C., Jamison, R.A., Nguyen, M.H. and Lee, B. (2001) Himalayan tectonics explained by extrusion of a low-viscovity crustal channel coupled to focused surface denudation. Nature, v.414, pp.738–742.

    Google Scholar 

  • Berthe, D., Choukroune, P. and Jegouzo, P. (1979) Orthogniess mylonite and non coaxial deformation of granites: the example of the south Aemorican Shear Zone. Jour. Struct. Geol., v.1, pp.31–42.

    Google Scholar 

  • Bhanot, V.B., Singh, V.P., Kansal, A.K. and Thakur, V.C. (1977) Early proterozoic Rb-Sr whole rock age for central crystalline Gneiss of Higher Himalaya. Jour. Geol. Soc. India, v.18, pp.90–91.

    Google Scholar 

  • Bhattacharya, A.R. (1982) Geology of the That — Tejam — Girgaon Area, Kumaon Himalaya with special reference to the record of schuppon structure and measurement of flattening folds. Geosci. Jour., v.3, pp.27–42.

    Google Scholar 

  • Bhattacharya, A.R. (1987) A “Ductile Thrust” in the Himalaya. Tectonophysics, v.135, pp. 37–45

    Google Scholar 

  • Bojar, A-V., Fritz, H., Nicolescu, S., Bregar, M. and Gupta, R.P. (2005) Timing and mechanisms of Central Himalayan exhumation: discriminating between tectonic and erosion processes. Terra Nova, v.17, pp.427–433.

    Google Scholar 

  • Bordet, P. (1961) Recherches geologiques dans 1’Himalaya du Nepal region du Makalu Centre. Nat. Recher. Scientifique, Parris, 275p.

    Google Scholar 

  • Bordet, P., Colchen, M. and le Fort, P. (1972) Some features of the geology of the Annapurna range Nepal Himalaya. Jour. Him. Geol., v.2, pp.537–563.

    Google Scholar 

  • Bouchez, J.L. and Pecher, A. (1981) The Himalayan Main Central Thrust pile and its quartz rich tectonites in central Nepal. Tectonophysics, v.78, pp.23–50.

    Google Scholar 

  • Bregar, M., Fritz, H., Proyer, A. and Handler, R. (2001) Tectonothermal evolution of the high Himalayan crystalline in the Gori Ganga Valley, Kumaon, India. Abstracts: 16th Himalayan-Karakoram-Tibet Workshop, Austria, pp.7–8.

  • Brunel, M. (1986) Ductile thrusting in the Himalaya: shear sense criteria and stretching lineation. Tectonics, v.5, pp.247–265.

    Google Scholar 

  • Burbank, D.W, Beck, R.A. and Mulder, T. (1996) The Himalayan foreland basin. In: A. Yin and T.M. Harison, (Eds.), The TectonicEvolution of Asia. Cambridge University, pp. 149–188.

  • Burchfiel, B. C. and Royden, L.H. (1985) North-South extension within the convergent Himalayan region. Geology, v.13, pp.679–682.

    Google Scholar 

  • Burchfiel, B.C., Zhiliang, C., Hodges K.V., Yuping, L., Royden, L.H., Changrong, D. and Jiene, X. (1992) The south Tibetan detachment system, Himalayan orogen: extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geol. Soc. Amer., Spec. Paper, v.269, pp.1–44.

    Google Scholar 

  • Burg, J.P., Guirand, M., Chen, G.M. and Li, G.C. (1984) Himalayan metamorphism and deformation in the Northern Himalayan Belt (southern Tibet, China). Earth Planet. Sci. Newsletter, v.69, pp.391–400.

    Google Scholar 

  • Burg, J.P. and Chen, G.M. (1984) Tectonics and structural zonation of southern Tibet. Nature, v.311, pp.219–223.

    Google Scholar 

  • Carmignani, L., Giglia, G. and Kligfield, R. (1978) Structural evolution of the ApuaneAlps: an example of continental margin deformation in the Northern Apennines, Italy. Jour. Geol., v.86, pp.487–504.

    Google Scholar 

  • Carosi, R., Musumeci, G. and Pertusati, P.C. (1999) Extensional tectonics in the higher Himalayan crystallines of Khumbu Himal, eastern Nepal. Geol. Soc. Amer. Spec. Paper, v.328, pp.211–223.

    Google Scholar 

  • Cases, J.M., (1986) Shear bands and related extensional structures in a mylonitized quartz dyke. Jour. Struct. Geol., v.8(6), pp.693–699.

    Google Scholar 

  • Catlos, E.J., Dubey, C.S., Harrison, T.M. and Edwards, M.A. (2004) Late Miocene movement within the Himalayan Main Central Thrust shear zone, Sikkim, northeast India: Jour. Metamorph. Geol., v.22, pp.207–226.

    Google Scholar 

  • Coleman, M.E. (1998) U-Pb constraints on Oligocene-Miocene deformation and anatexis within the Central Himalaya, Marsyandi valley, Nepal, Am. Sci. Jour., v.298, pp.553–571.

    Google Scholar 

  • Copeland, P. and Harrison, M.T. (1990) Episodic rapid uplift in the Himalaya revealed by 40Ar/39Ar analysis of detrital Kfelspar and muscovite, Bengal fan. Geology, v.18, pp.354–359.

    Google Scholar 

  • Decelles, P. G., Robinson, D.M., Quade, J., Ojha, T.P., Garzione, C.N., Copeland, P. and Upreti, B.N. (2001) Stratigraphy, structure, and tectonic evolution of the Himalayan fold-thrust belt in western Nepal. Tectonics, v.20, pp.487–509.

    Google Scholar 

  • Dennis, A.J. and Secor, D.I. (1987) A model for the development of crenulations in shear zones with application from the Southern Applachian Piedmont. Jour. Struct. Geol. v.9(7), pp.809–817.

    Google Scholar 

  • Derry, L.A. and France-Lanord, C. (1997) Himalayan weathering and erosion fluxes: climate and tectonic controls. In: W.F. Ruddiman (Ed.), Tectonic Uplift and Climate Change, Plenum, New York, pp.290–312.

    Google Scholar 

  • Dezes, P.J., Vannay, J.C., Steck, A., Bussy, F. and Cosca, M. (1999) Synorogenic extension: quantitative constraints on the age and displacement of the Zanskar Shear Zone (northwest Himalaya), Geol. Soc. Am. Bull., v.111, pp.364–374.

    Google Scholar 

  • Dimitrizevic, M. (1956) A new net for construction of contour diagrams. Univ. of Beogard. Min. and Geol. Faculties Trans. (in Yugoslavian with English Summary).

  • Dodson, M.H. (1973) Closure temperature in cooling geochronological and petrological systems. Contrib. Mineral. Petrol., v.40, pp.259–274.

    Google Scholar 

  • Dubey, A.K. and Paul, S.K. (1993) Map patterns produced by thrusting and subsequent superposed folding: Model experiments and example from the NE Kumaon Himalayas. Eclogae. Geol. Helv., v.86/3, pp.839–852.

    Google Scholar 

  • Einsele, G., Ratschbacher, L. and Wetzel, A. (1996) The Himalaya-Bengal fan denudation-accumulation system during the past 20 Ma. Jour. Geol., v.1041, pp.63–184.

    Google Scholar 

  • Escher, A. and Watterson, J. (1974) Stretching fabrics, fold and crustal shorting. Tectonophysics, v.22, pp.223–231.

    Google Scholar 

  • Frank, W., Thoni, M. and Purtscheller, F. (1977) Geology and petrography of Kulu-South Lahaul area, Colloq. Int. Cent. Nat. Res. Sci., v.33, pp.147–172.

    Google Scholar 

  • Gansser, A. (1964) Geology of the Himalayas. Interscience, London, 289p.

    Google Scholar 

  • Garzanti, E., Baud, A. and Mascle, G. (1987) Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya, India. Geodinamica Acta, v.1, pp.297–312.

    Google Scholar 

  • Gleadow, A.J.W. and Lovering, J.F. (1977) Geometry factor for external detectors in fission track dating. Nucl. Track Detection, v.1, pp.99–106.

    Google Scholar 

  • Goscombe, B.D. and Passchier, C.W. (2003) Asymmetric boudins as shear sense indicators-an assessment from field data. Jour. Struct. Geol., v.25, pp.575–589

    Google Scholar 

  • Grasemann, B., Fritz, H. and Vannay, J.C. (1999) Quantitative kinematic flow analysis from the Main Central Thrust Zone (NW-Himalaya, India): implications for a decelerating strain path and extrusion of orogenic wedges. Jour. Struct. Geol., v.21, pp.837–853.

    Google Scholar 

  • Grasemann, B., Stuwe, K. and Vannay, J. C. (2003) Sense and non-sense of shear in flanking structures. Jour. Struct. Geol., v.25, pp.19–34.

    Google Scholar 

  • Griesbach, C.L. (1891) Notes on the Central Himalaya. Rec. Geol. Surv. India, v.26, pp.19–25.

    Google Scholar 

  • Harrison, T.M., Lovera, O.M. and Groove, M. (1997) New insights into the origin of two contrasting Himalayan granite belts. Geology, v.25, pp.899–902.

    Google Scholar 

  • Hashimoto, S., Ohta, Y. and Akiba, C. (1973) Geology of the Nepal Himalayas: Sapporo (Japan), Saikon Publ. Co., 286p.

    Google Scholar 

  • Heim, A. and Gansser, A. (1939) Central Himalaya: Societe Helvetique des Sciences Naturelles, v.73, pp.1–245.

    Google Scholar 

  • Herren, E. (1987) Zanskar Shear Zone: northeast-southwest extension within the Higher Himalaya (Ladakh, India), Geology, v.15, pp.409–413.

    Google Scholar 

  • Hodges, K.V., Parrish, R.R., Housh, T.B., Lux, D.R., Burchfiel, B.C., Royden, L.H. and Chen, Z. (1992) Simultaneous Miocene extension and shortening in the Himalayan orogeny. Science, v.258, pp.1466–1470.

    Google Scholar 

  • Hodges, K.V. (2000) Tectonics of the Himalaya and southern Tibet from two perspectives. Geol. Soc. Amer. Bull., v.112/3, pp.324–350.

    Google Scholar 

  • Hodges, K.V., Wobus, C., Ruhl, K., Schildgen, T. and Whipple, K. (2004) Quaternary deformation, river steepening, and heavy precipitation at the fron of the Higher Himalayan ranges. Earth Planet. Sci. Lett., v.220, pp.379–389.

    Google Scholar 

  • Hubbard, M.S. and Harrison, T.M. (1989) 40Ar/39Ar age constraints on deformation and metamorphism in the MCT zone and Tibetan slab, eastern Nepal Himalaya. Tectonics, v.8, pp.865–880.

    Google Scholar 

  • Hurford, A.J. (1990) Standardization of fission track dating calibration: recommendation by the fission track working group of IUGS subcommission on geochronology, Chem. Geol. (Isot. Geoschi. Sect.), v.80, pp. 171–178.

    Google Scholar 

  • Hurford, A.J. and Green, P.F. (1983) The Zeta age calibration of fission-track dating. Isot. Geosci., v.1, pp.285–317.

    Google Scholar 

  • Huyghe, P., et al. (2001) Propagation of the thrust system and erosion in the Lesser Himalaya: Geochemical and sedimentological evidence. Geology, v.29, pp.1007–1010.

    Google Scholar 

  • Jain, A. K. and Anand, A. (1988) Deformational and strain patterns of an intracontinental collision ductile shear zone — an example from the Higher Garhwal Himalaya. Jour. Struct. Geol., v.10, pp.717–734.

    Google Scholar 

  • Jain, A.K. and Manickvasagam, R.M. (1993) Inverted metamorphism in the intracontinental ductile shear zone during Himalayan collision tectonics. Geology, v.21, pp.407–410.

    Google Scholar 

  • Jain, A.K. and Patel, R.C. (1999) Structure of the Higher Himalayan Crystallines along the Suru-Doda Valleys (Zansker), NW-Himalaya In: A.K. Jain and R.M. Manickavasagam (Eds.), Geodynamics of the NW Himalaya. Gondawana Res. Group Mem., v.6, pp.91–110.

  • Jain, A.K., Kumar, D., Singh, S., Kumar, A. and Lal, N. (2000) Timing, quanti-Wcation and tectonic modelling of Plicocene-Quaternary movements in the NW Himalaya: evidences from Wssion track dating. Earth Planet. Sci. Lett., v.179, pp.437–451.

    Google Scholar 

  • Jain, A.K., Lal, N., Sulemani, B., Awasthi, A.K., Singh, S., Kumar, R. and Kumar, D. (2008) Detrital-zircon fission-track ages from the Lower Cenozoic sediments, NW Himalayan foreland basin: Clues for exhumation and denudation of the Himalaya during the India-Asia collision, Geol. Soc. Amer. Bull. v.121, no.3/4; pp.519–535; doi: 10.1130/B26304.1

    Google Scholar 

  • Jain, A.K., Singh, S. and Manickavasagam, R.M. (2002) Himalayan Collision Tectonics. Gondwana Res. Group Mem., v.7, 114p.

  • Jain, A.K., Manickavasagam, R.M., Singh, S. and Mukherjee, S. (2005) Himalayan collision zone: new perspectives-its tectonic evolution in a combined ductile shear zone and channel flow model. Jour. Him. Geol., v.26(1), pp.1–18.

    Google Scholar 

  • Kohn, M.J., Catlos, E.J., Ryerson, F.J. and Harrison, T.M. (2002) Pressure-temperature-time path discontinuity in the Main Central thrust zone, Central Nepal. Geology, v.30, pp.480–481, doi: 10.1130/0091-7613(2002)030 <0480:R>2.0.CO;2.

    Google Scholar 

  • Klootwijk, C.T., Gee, J.S., Peirce, J.W., Smith, G.M. and Mcfadden, P.L. (1992) An early India-Asia contact-Paleomagnetic constraints from Ninetyeast Ridge, Ocean Drilling Program Leg 121. Geology, v.20, pp.395–398.

    Google Scholar 

  • Kumar, G. (2005) Geology of UttarPradesh and Uttranchal. Geol. Soc. India, Bangalore, 383p.

    Google Scholar 

  • Kumar, Y. (2004) Tectonic evolution and exhumation history of the Chiplakot Crystalline belt and Higher Himalayan Crystallines along Kali-Darma valleys, Kumaon Himalaya, India, Unpublished Ph.D. Thesis, Kurukshetra University, Kurukshetra, 106p.

    Google Scholar 

  • Kumar, Y. and Patel, R.C. (2004) Deformation mechanisms in the Chiplakot Crystalline Belt (CCB) along Kaliganga-Gori valleys (Kumaon), NW-Himalaya. Jour. Geol. Soc. India, v.64, pp.76–91.

    Google Scholar 

  • Kumar, A., Lal, N., Jain, A.K. and Sorkhabi, R.B. (1995) Late-Cenozoic-Quaternary Thermo-tectonic history of Higher Himlayan Crystalline (HHC) in Kishtwar-Padar-Zanskar region, NW Himalaya: Evidence from fission track ages. Jour. Geol. Soc. India, v.45, pp.375–391.

    Google Scholar 

  • Lave, J. and Avouac, J.P. (2000) Active folding of fluvial terraces across the Siwalik Hills, Himalayas of Central Nepal. Jour. Geophys. Res., v.105, pp.5735–5770.

    Google Scholar 

  • Le Fort, P. (1975) Himalaya, the collided range. Present knowledge of the continental arc. American Jour. Sci., v.275a, pp.1–44.

    Google Scholar 

  • Lister, G.S. and Snoke, A.W. (1984) S-C Mylonite. Jour. Struct. Geol., v.6, pp.617–638.

    Google Scholar 

  • Manickavasagam, R.M., Jain, A.K., Singh, S. and Asokan, A. (1999) Metamorphic evolution of the NW-Himalaya, India: Pressure-temperature data, inverted metamorphism, and exhumation in the Kashmir, Himachal, and Garhwal Himalaya. In: A. Macfarlane, R.B. Sorkhabi, and J. Quade (Eds.), Himalaya and Tibet: Mountain roots to Mountain Tops. Geol. Soc. Amer. Spec. Paper, v.328, pp.179–198.

  • Martin, A.J., Decelles, P.G., Gehrels, G.E., Patchett, P.J. and Isachsen, C. (2005) Isotopic and structural constraints on the location of the Main Central thrust in the Annapurna Range, central Nepal Himalaya. Geol. Soc. Amer. Bull., v.117, pp.926–944.

    Google Scholar 

  • Mattauer, M. (1986) Intracontinental subduction, crusty-mantle decollement and crust-stacking wedge in the Himalaya and other collisional belts. In: M.P. Coward and A. Ries (Eds.), Collision Tectonics. Geol. Soc. London, Spec. Publ., v.10, pp.37–50.

  • Meigs, A.J., Burbank, D.W. and Beck, R.A. (1995) Middle-Late Miocene (>10 Ma) formation of the Main Boundary Thrust in the western Himalaya. Geology, v.23, pp.423–426.

    Google Scholar 

  • Metcalfe, R.P. (1993), Pressure, temperature and time constraints on metamorphism across the Main Central Thrust zone and High Himalayan Slab in the Garhwal Himalaya. In: P.J. Trelaor and M.P. Searle, (Eds.), Himalayan Tectonics. Geol. Soc. Spec. Publ., v.74, pp.485–509.

  • Metivier, F. et al. (1999) Mass accumulation rates in Asia during the Cenozoic, Geophys. Jour. Internat., v.137, pp.280–318.

    Google Scholar 

  • Molnar, P. and Tapponier, P. (1975) Cenozoic tectonics of Asiaeffects of a continental collision. Science, v.189(4201), pp.419–426.

    Google Scholar 

  • Najman, Y., Garzanti, E., Pringle, M., Bickle, M., Ando, S. and Brozovic, N. (2002) Exhumation and attainment of steady state in the Himalaya: insights from the detrital sediment record, EOS (Transactions-American Geophysical Union), v.83, F1302.

    Google Scholar 

  • Najman, Y., Pringle, M., Bickle, M., Garzanti, E., Burbank, D., Ando, S., and Brozovic, N. (2003) Non-steady-state exhumation of the Higher Himalaya, N.W. India: insights from a combined isotopic and sedimentological approach, Geophysical Research Abstracts v.5, European Geophysical Society, Nice, 2003.

  • Passchier, C.W. and Simpson, C. (1986) Porphyroclast systems as kinematic indicators. Jour. Struct. Geol., v.8, pp.831–843.

    Google Scholar 

  • Patel, R.C. (1991) Strain geometry and strain patterns of the collision zone, Zansker, NW-Himalaya, PhD Thesis. Dept. Earth Sci., Univ. Roorkee, Roorkee, India, 219p.

    Google Scholar 

  • Patel, R.C., Singh, S., Asokan, A., Manickavasagam, R.M. and Jain, A.K. (1993) Extensional tectonics in the Himalayan orogen Zanskar, NW India. In: P.J. Trelaor and M.P. Searle (Eds.), Himalayan Tectonics. Geol. Soc. Spec. Publ., v.74, pp.445–459.

  • Patel, R.C. and Carter, A. (2009) Exhumation history of the Higher Himalayan Crystalline along Dhauliganga-Goriganga River valleys, NW India: New constraints from fissiontrack analysis. Tectonics v.28, TC3004, doi: 10.1029/2008TC002373.

    Google Scholar 

  • Patel, R.C. and Kumar, Y. (2009) Deformation and structural analysis of the Higher Himalayan Crystallines along Goriganga valley, Kumaon Himalaya, India. In: S. Kumar (Ed.), Magamatism, Tectonism and Mineralization. Macmillan Publishers India Ltd., New Delhi, India, pp.146–166.

    Google Scholar 

  • Patel, R.C. and Kumar, Y. (2003) Geomorphological study of Quaternary Tectonics of the Doon Valley, Garhwal Himalaya, Uttaranchal. Jour. Nepal Geol. Soc., v.28, pp.121–132.

    Google Scholar 

  • Patel, R.C. and Kumar, Y. (2006) Late-to-post collisional brittleductile deformation in the Himalayan orogen: evidences from structural studies in the Lesser Himalayan Crystallines, Kumaon Himalaya, India. Jour. Asian Earth Sci., v.27, pp.735–750

    Google Scholar 

  • Patel, R.C., Kumar, Y., Lal, N. and Kumar, A. (2007) Thermotectonic history of the Chiplakot Crystalline Belt in the Lesser Himalaya, Kumaon, India: Constraints from apatite fission-track thermochronology, Jour. Asian Earth Sci., v.29, pp.430–439.

    Google Scholar 

  • Patriat, P. and Achache, J. (1984) India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates, Nature, v.311, pp.615–621.

    Google Scholar 

  • Paul, S.K. (1986) Seismic condition in the northeastern Kumaon Himalaya and the adjoining area in far most western Nepal. Internat. Symp. Neotectonics in South Asia. Survey of India, Dehradun, India, pp.396–406.

  • Paul, S. K. (1998) Geology and tectonics of the Central Crystallines of northeastern Kumaon Himalaya, India. Jour. Nepal Geol. Soc., v.18, pp.151–167.

    Google Scholar 

  • Paul, S.K., Bartarya, S.K., Rautela, P. and Mahajan, A.K. (2000) Catastrophic mass movement of 1998 monsoons ar Malpa in Kaliganga valley, Kumaon Himalaya (India), Geomorphology, v.35, pp.169–180.

    Google Scholar 

  • Paul, A., Pant, C.C., Darmwal G.S. and Pathak, V. (2007) Seismicity of Uttarakhand as recorded by Kumaon digital telemetered Seismic Network. In: O.P. Varma, A.K. Mahajan and V. Gupta (Eds.), Natural Hazards. Spl. Vol. of IGC, Indian Geol. Cong., pp.57–63.

  • Pecher, A. (1977) Geology of Nepal Himalaya: Deformation and petrography in the Main Central Thrust Zone. Ecologie et Geologie de l’Himalaya, Colloques Internationaux du Centre National de la Recherche Scientifique, Paris 268, pp.301–318.

    Google Scholar 

  • Platt, J. P. and Vissers, R. L. M. (1980) Extensional structures in anisotropic rocks. Jour. Struct. Geol., v.2, pp.397–410.

    Google Scholar 

  • Powar, K.B. (1972) Petrology and structure of Central Crystalline Zone, northeastern Kumaun. Him. Geol., v.2, pp.34–46.

    Google Scholar 

  • Rao, D.R., Sharma, K.K. and Gopalan, K. (1995) Granitoid rock of Wangtu Gneissic Complex, Himachal Pradesh: an example of in situ fractional crystallisation and volatile action. Jour. Geol. Soc. India, v.46, pp.5–14.

    Google Scholar 

  • Rhodes, S. and Gayer, R.A. (1977) Non-cylindrical folds, linear structures in the X-direction and mylonite developed during translation of the Caledonian Kalak Nappe Complex of Finmark. Geologique Magazine, v.114, pp.329–341.

    Google Scholar 

  • Richter, F.M., Rowley, D.B. and Depaolo, D.J. (1992) Sr isotope evolution of seawater: role of tectonics. Earth Planet. Sci. Lett., v.109, pp.11–23.

    Google Scholar 

  • Robyr, M., Bradley, R.H. and Mattinson, J.M. (2006) Doming in compressional orogenic settings: New geochronological constraints from the NW Himalaya. Tectonics, v.25, TC2007, doi: 10.1029/2004TC001774.

    Google Scholar 

  • Rowley, D.B. (1996) Age of initiation of collision between India and Asia review of stratigraphic data, Earth Planet. Sci. Lett., v.145, pp.1–13.

    Google Scholar 

  • Roy, A.B. and Valdiya, K.S. (1988) Tectonometamorphic evolution of the great Himalayan Thrust Sheets in Garhwal Region, Kumaon Himalaya. Jour. Geol. Soc. India, v.32, pp.106–124.

    Google Scholar 

  • Sanderson, D.J. (1973) The development of fold axes oblique to the regional trend. Tectonophysics, v.16, pp.55–70.

    Google Scholar 

  • Searle, M. P. (1986) Structural evolution and sequence of thrusting in the High Himalayan, Tibet-Tethys and Indus Suture Zones of Zanskar and Ladakh, western Himalaya. Jour. Struct. Geol., v.8, pp.923–936.

    Google Scholar 

  • Searle, M.P., Cooper, D.J.W. and Rex, A.J. (1988) Collosion tectonics of the Ladakh-Zanskar Himalaya. Phil. Trans. R. Soc. London Ser. A. 326, pp. 117–150.

    Google Scholar 

  • Searle, M.P. (1999) Emplacement of Himalayan leucogranites by magma injection along giant sill complexes: examples from the Cho Oyu, Gyachung Kang and Everest leucogranites (Nepal Himalaya), Jour. Asian Earth Sci., v.17, pp.773–783.

    Google Scholar 

  • Searle, M.P., Waters, D.J. Dransfield, M.W., Stephenson, B.J., Walker, C.B., Walker, J.D. and Rex, D.C. (1999) Thermal and mechanical models for the structural and metamorphic evolution of the Zanskar, High Himalaya. In: C. MacNiocaill and P.D. Ryan (Eds.), Continental Tectonics. Geol. Soc. London Spec. Publ., No.164, pp.139–156.

  • Searle, M.P., Waters, D.J. and Stephenson, B.J. (2002) Pressuretemperature path discontinuity in the Main Central thrust zone, Central Nepal. Geology, v.30, pp.479–480, doi: 10.1130/0091-7613(2002)030<0479: PTTPDI>2.0.CO;2.

    Google Scholar 

  • Searle, M.P., Law, R.D., Godin, L., Larson, K.P., Streule, M.J., Cottle, J.M. and Jessup, M.J. (2008) Defining the Himalayn Main Central Thrust in Nepal. Jour. Geol. Soc. London, v.165, pp.523–534.

    Google Scholar 

  • Seitz, J.F., Tewari, A.P. and Obradovich, J. (1976) Anote on the absolute age of the tourmaline-granite, Arwa valley, Garhwal Himalaya. Geol. Soc. India, Misc. Publ., v.24, pp.332–337.

    Google Scholar 

  • Simpson, C. and Schmidt, S. (1983) An evaluation of criteria to deduce the sense of movement in sheared rocks. Bull. Geol. Soc. Amer., v.94, pp.1281–1288.

    Google Scholar 

  • Singh, V.P., Bhanot, V.B. and Singh, R.P. (1985) Geochronology of the granitic and gneissic rocks from Munsiari, Namik and Tawaghat areas of the Central Crystalline Zone, Kumaon Himalaya, U.P., Preprint presented at the 3rd National Symposium on Mass Spectrometry, Hyderabad, pp.22–24.

  • Singh, S., Claesson, S., Jain, A.K., Sjoberg, H., Gee, D.G., Manickavasagam, R.M. and Andreasson, P.G. (1994) Geochemisty of the Proterozoic peraluminuous granitoids from the Higher Himalayan crystalline (HHC) and Jutogh Nappe, Himachal Pradesh, India. Jour. Geol. Soc. Nepal, v.10, pp.125.

    Google Scholar 

  • Singh, S. and Jain, A.K. (1993) Deformational and strain patterns of the Jutogh Nappe along the Sutlej valley in Jeori-Wagntu region, Himachal Pradesh, India. Jour. Himalayan Geol., v.4(1), pp.41–55.

    Google Scholar 

  • Srivastava, P. and Mitra, G. (1994) Thrust geometries and deep structure of the outer and lesser Himalaya, Kumaon and Garhwal (India): Implications for evolution of the Himalayan fold-and-thrust belt. Tectonics, v.13, v.89–109.

    Google Scholar 

  • Stern, C. R., Kligfield, R., Schelling, D., Virdi, N.S., Futa, K., Peterman, Z.E. and Amini, H. (1989) The Bhagirathi leucogranite of the High Himalaya (Garhwal, India): age, petrogenesis, and tectonic implications. In: L.L. Malinconico and R.J. Lille (Eds.), Tectonics of the Western Himalaya. Geol. Soc. Amer., Spec. Paper, v.232, pp.33–45.

  • Thakur, V.C. (1987) Development of major structures across the northwestern Himalaya, India. Tectonophysics, v.135, pp.1–13.

    Google Scholar 

  • Thakur, V.C. (1992) Geology of western Himalaya, Pergamon Press, 366p.

  • Thakur, V.C., Rautela, P. and Jafaruddin, M. (1995) Normal faults in Panjal Thrust zone in Lesser Himalaya and between the Higher Himalaya Crystallines and Chamba sequence in Kashmir: Himalaya, India. Proc. Indian Acad. Sci. (Earth Planet. Sci.), v.104(3), pp.499–508.

    Google Scholar 

  • Thakur, V.C. and Choudhury, B. K. (1983) Deformation, metamorphism and tectonic relations of Central Crystallines and Main Central Thrust in Eastern Kumaon Himalaya. In: P.S. Saklani (Ed.), Himalayan Shears. Himalayan Books, New Delhi, pp.45–47.

    Google Scholar 

  • Thiede, R. C., Ehlers, T. A., Bookhagan, B. and Strecker, M. R. (2009) Erosional variability along NW Himalaya. Jour. Geophys. Res., doi: 10.1029/2008JF001010

  • Valdiya, K. S. (1973) Lithological subdivision and tectonics of the “Central Crystalline Zone” of Kumaon Himalaya. In: H.K. Gupta (Ed.), Proc. Symp on Geodynamics of the Himalayan region: Hyderabad, India. National Geophysical Research Institute, pp.204–205.

  • Valdiya, K. S. (1977) Structural set-up of Kumaon Lesser Himalaya Himalaya. Science de la Terra, C.N.R.S., v.268, pp.449–462.

    Google Scholar 

  • Valdiya, K. S. (1979) An outline of the structural set-up of the Kumaon Himalaya. Jour. Geol. Soc. India, v.20, pp.145–157.

    Google Scholar 

  • Valdiya, K.S. (1980) Geology of the Kumaun Lesser Himalaya: Dehra Dun, India. Wadia Institute of Himalayan Geology, 291p.

  • Valdiya, K.S. (1988) Tectonics and evolution of the central sector of the Himalaya, Phill. Transact. Royal Soc. London, v.A326, pp.151–175.

    Google Scholar 

  • Valdiya, K.S. (1989) Trans-Himadri intracrustal fault and basement upwarps south of the Indus-Tsangpo Suture Zone. Geol. Soc. Amer. Spec. Paper, pp.153–168.

  • Valdiya, K.S. and Goel, O.P. (1983) Lithological subdivision and petrology of the great Himalayan Vaikrita Group in Kumaon Himalaya, India. Proc. Indian Acad. Sci. (Earth Planet. Sci.), v.92, pp.141–163.

    Google Scholar 

  • Valdiya, K.S. (1992) The Main Boundary Thrust Zone of the Himalaya. Annales Tectonicae, v.6, pp.54–84

    Google Scholar 

  • Vannay, J.-C., Grasemann, B., Rahn, M., Frank, W., Carter, A., Baudraz, V. and Cosca, M. (2004) Miocene to Holocene exhumation of metamorphic crustal wedges in the NW Himalaya: Evidence for tectonic extrusion coupled to Xuvial erosion. Tectonics, v.23, TC1014, doi:10.1029/2002TC001429.

    Google Scholar 

  • Virdi, N.S. (1980) Problem of the root zone of nappes in the Western Himalaya. Himalayan Geol., v.10, pp.55–77.

    Google Scholar 

  • White, S.H., Burrows, S.E., Carreras, J., Shaw, N. D. and Humpreys, F. J. (1980) On mylonites in ductile shear zones. Jour. Struct. Geol., v.2, pp.175–187.

    Google Scholar 

  • White, N.M., Pringle, M., Garzanti, E., Bickle, M., Najman, Y., Chapman, H. and Friend, P. (2002) Constraints on the exhumation and erosion of the High Himalayan Slab, NW India, from foreland basin deposits. Earth Planet. Sci. Lett., v.195, pp.29–44.

    Google Scholar 

  • Yin, A. (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation, Earth Sci. Rev., v.76, pp.1–131.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, R.C., Adlakha, V., Singh, P. et al. Geology, structural and exhumation history of the Higher Himalayan Crystallines in Kumaon Himalaya, India. J Geol Soc India 77, 47–72 (2011). https://doi.org/10.1007/s12594-011-0008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-011-0008-5

Keywords

Navigation