Skip to main content
Log in

Mineral matter and the nature of pyrite in some high-sulfur tertiary coals of Meghalaya, northeast India

  • Research Article
  • Published:
Journal of the Geological Society of India

Abstract

Coal samples collected from four different sources in the Jaintia Hills of Meghalaya, northeast India, have been investigated for their sulfur content, mineral matter, and to assess their potential behavior upon beneficiation. These coals contain high sulfur which occurs both in organic and inorganic forms. The organic sulfur content is much higher than the inorganic sulfur. Studies on different size and gravity fractions indicated that the mineral phases are concentrated in higher density fractions (d > 1.8) and in general are fine grained (<50 μm). Data of reflected-light optical microscope and electron probe micro-analysis (EPMA) revealed that minerals in these coals are sulfides-pyrite, marcasite, sphalerite, pentlandite; sulfates-barite, jarosite; oxides-hematite, rutile; hydroxides-gibbsite, goethite; phosphate-monazite; carbonate-calcite, siderite and silicates-quartz, mica, chlorite, and kaolinitic clay. The disulfides of iron occur in two modes — mainly pyrite and occasionally marcasite with wide size ranges and in various forms, such as: framboid, colloidal precipitate, colloform-banded, fine disseminations, discrete grains, dendritic (feathery), recrystallized, nuggets, discoidal, massive, cavity-fracture- and cleat-fillings. Framboidal pyrite has formed primarily due to biological activities of sulfur reducing bacteria in the early stages of coalification. Massive and other varieties have formed at later stages due to coalescence and recrystallization of the earlier formed pyrites. Sulfur isotopic values indicate a biogenic origin for the pyrites. Association of trace metals, such as Ni, and Zn has been recorded in these pyrites. Given the large fractions of organic sulfur present, these coals can be upgraded only partially to reduce the sulfur content by beneficiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acharyya, S.K. (2000) Coal and lignite resources of India: an overview. Geol. Soc. India. 50p.

    Google Scholar 

  • Ahmed, M. and Rahim, A. (1996) Abundance of sulfur in Eocene coal beds from Bapung, northeast India. Internat. Jour. Coal Geol., v.30, pp.315–318.

    Article  Google Scholar 

  • Altschuler, Z.S., Schnepfe, M.M., Silber, C.C. and Simon, F.O. (1983) Sulfur diagenesis in Everglades peat and origin of pyrite in coal. Science, v.221, pp.221–227.

    Article  Google Scholar 

  • Berner, R.A. (1969) The synthesis of framboidal pyrite. Econ. Geol., v.64, pp.383–384.

    Article  Google Scholar 

  • Casagrande, D.J. and Nug, L. (1979) Incorporation of elemental sulphur in coal as organic sulphur. Nature, v.282, pp.598–599.

    Article  Google Scholar 

  • Casagrande, D.J, Siefert, K., Berschinski, C. and Sutton, N. (1977) Sulfur in peat-forming systems of the Okefenokee swamp and Florida Everglades: origin of sulfur in coal. Geochim. Cosmochim. Acta, v.41, pp.161–167.

    Article  Google Scholar 

  • Chandra, D., Mazumdar, K. and Basumallick, S. (1983) Distribution of sulphur in the Tertiary coals of Meghalaya, India. Internat. Jour. Coal Geol., v.3, pp.63–75.

    Article  Google Scholar 

  • Chou, C-L. (1990) Geochemistry of sulfur in coal. In: Orr WL, White CM (Ed) Geochemistry of sulfur in fossil fuels. Amer. Chem. Soc., Washington D.C., ACS Symposium series, v.429, pp.30–52.

    Article  Google Scholar 

  • Dai, S., Hou, X., Ren, D. and Tang, Y. (2003) Surface analysis of pyrite in the No.9 coal seam, Wuda Coalfield, Inner Mongolia, China, using high-resolution time-of-flight secondary ion mass-spectrometry. Internat. Jour. Coal Geol., v.55, pp.139–150.

    Article  Google Scholar 

  • Dai, S., Ren, D., Chou, C-L., Li, S. and Jiang, Y. (2006) Mineralogy and geochemistry of the No. 6 coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. Internat. Jour. Coal Geol., v.66, pp.253–270.

    Article  Google Scholar 

  • Dai, S., Ren, D., Tang, Y., Shao, L. and Li, S. (2002) Distribution, isotopic variation and origin of sulfur in coals in the Wuda coalfield, Inner Mongolia, China. Internat. Jour. Coal Geol., v.51, pp.237–250.

    Article  Google Scholar 

  • Dai, S., Ren, D., Zhou, Y., Chou, C-L., Wang, X., Zhao, L. and Zhu, X. (2008) Mineralogy and geochemistry of a superhighorganic-sulfur coal, Yanshan Coalfield, Yunnan, China: evidence for a volcanic ash component and influence by submarine exhalation. Chem. Geol., v.255, pp.182–194.

    Article  Google Scholar 

  • Farrand, M. (1970) Framboidal sulphides precipitated synthetically. Miner. Deposita, v.5, pp.237–247.

    Article  Google Scholar 

  • Gayer, R.A., Rose, M., Dehmer, J. and Shao, L-Y. (1999) Impact of sulphur and trace element geochemistry on the utilization of a marine-influenced coal — case study from the South Wales Variscan foreland basin. Internat. Jour. Coal Geol., v.40, pp.151–174.

    Article  Google Scholar 

  • Graham, U.M. and Ohmoto, H. (1994) Experimental study of formation mechanisms of hydrothermal pyrite. Geochim. Cosmochim. Acta, v.58, pp.2187–2202.

    Article  Google Scholar 

  • Greb, S.F., Eble, C.F. and Chesnut, D.R Jr. (2002) Comparison of the eastern and western Kentucky coal fields (Pennsylvanian), USA — why are coal distribution patterns and sulfur contents so different in these coal fields? Internat. Jour. Coal Geol., v.50, pp.89–118.

    Article  Google Scholar 

  • Hacquebard, P.A and Donaldson, J.R. (1969) Carboniferous coal deposition associated with flood plain and limnic environments in Nova Scotia. In: E.C. Dapples and M.E. Hopkins (Eds.), Environment of coal deposition. Geol. Soc. Amer. Spec. Paper, v.114, pp.143–191.

    Google Scholar 

  • Hans, G.M., Roy, H.K. and Roger, S. (1995) Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Appl. Geochem., v.10, pp.373–389.

    Article  Google Scholar 

  • Howarth, R.W. (1979) Pyrite: Its rapid formation in a salt marsh and its importance in ecosystem metabolism. Science, v.203, pp.49–51.

    Article  Google Scholar 

  • Indian Coals (1982) Tertiary coal and lignite fields. Central Fuel Research Institute, Dhanbad, v.8.

    Google Scholar 

  • Indian Minerals Yearbook (2008) Indian Bureau of Mines, Nagpur.

    Google Scholar 

  • Jiang, Y.F., Tang, Y.G. and Chou, C-L. (2006) Research on genesis of pyrite near the Permian-Triassic boundary in Meishan, Zhejiang, China. Jour. China Univ. Mining Technol., v.16, pp.457–460.

    Article  Google Scholar 

  • Kalliokoski, J. and Cathles, L. (1969). Morphology, mode of formation, and diagenetic changes in framboids. Bull. Geol. Soc. Finland, v.41, pp.153–163.

    Google Scholar 

  • Krishnan, M.S. (1982) Geology of India and Burma. CBS Publishers and Distributors, Delhi 536p.

    Google Scholar 

  • Love, L.G. (1957) Microorganisms and the presence of syngenetic pyrite. Quart. Jour. Geol. Soc. London, v.113, pp.429–440.

    Article  Google Scholar 

  • Mishra, H.K. and Ghosh, R.K. (1996) Geology, petrology and utilization potential of some Tertiary coals of the northeastern region of India. Internat. Jour. Coal Geol., v.30, pp.65–100.

    Article  Google Scholar 

  • Morse, J.W., Millero, F.J., Cornwell, J.C. and Rickard, D. (1987) The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters. Earth Sci. Rev., v.24, pp.1–42.

    Article  Google Scholar 

  • Mukherjee, K.N., Dutta, N.R., Chandra, D. and Singh, M.P. (1992) Geochemistry of trace elements of Tertiary coals of India. Internat. Jour. Coal Geol., v.20, pp.99–113.

    Article  Google Scholar 

  • Mukherjee, K.N., Raja Rao C.S., Chowdhury, A.N., Pal, J.C. and Das, M. (1982) Trace element studies in the major Tertiary and Gondwana coalfields of India. Bull. Geol. Surv. India, v.49, pp.1–115.

    Google Scholar 

  • Nayak, B., Chakravarty, S. and Bhattacharyya, K.K. (2008) Invisible gold in the high-sulphur Tertiary coals of northeast India. Curr. Sci., v.95, pp.1334–1337.

    Google Scholar 

  • Nongkynrih, P., Rao P.V.R., Rao, Y.S.T. and Khathing, D.T. (1984) Trace element analysis of coalfields of Meghalaya. Rec. Geol. Surv. India, v.113, pp.105–107.

    Google Scholar 

  • Price, F.T. and Casagrande, D.J. (1991) Sulfur distribution and isotopic composition in peats from the Okefenokee Swamp, Georgia and the Everglades, Florida. Internat. Jour. Coal Geol., v.17, pp.1–20.

    Article  Google Scholar 

  • Price, F.T. and Shieh, Y.T. (1979) The distribution and isotopic composition of sulphur in coals from the Illinois basin. Econ. Geol., v.74, pp.1445–1461.

    Article  Google Scholar 

  • Querol, X., Fernandez-turiel, J.L., Lopez-soler, A., Hagemann, H.W., Dehmer, J., Juan, R. and Ruiz, C. (1991) Distribution of sulfur in coals of the Teruel mining district, Spain. Internat. Jour. Coal Geol., v.18, pp.327–346.

    Article  Google Scholar 

  • Raja Rao, C.S. (1981) Coalfields of India, vol. I-Coalfields of North Eastern India. Bull Series A, Geol. Surv. India, v.45, pp.1–76.

    Google Scholar 

  • Renton, J.J. (1982) Mineral matter in coal. In: R.A. Meyers (Ed.), Coal Structure. Academic Press, New York, pp.283–326.

    Google Scholar 

  • Rickard, D.T. (1970) The origin of framboids. Lithos, v.3, pp.269–293.

    Article  Google Scholar 

  • Robert, A.B. (1984) Sedimentary pyrite formation: an update. Geochim. Cosmochim. Acta, v.48, pp.605–615.

    Article  Google Scholar 

  • Scheihing, M.H, Gluskoter, H.J. and Finkelman, R.B. (1978) Interstitial networks of kaolinite within pyrite framboids in the Meigs Creek coal of Ohio. Jour. Sedimen. Res., v.48, pp.723–732.

    Google Scholar 

  • Schneiderhöhn, H. (1923) Chalkographische Untersuchung des Mansfelder Kupferschiefers. N. Jb. Miner. Geol. Paläeontol., v.47, pp.1–38.

    Google Scholar 

  • Schoonen, M.A.A. (2004) Mechanisms of sedimentary pyrite formation. In: Amend et al. (Eds.), Sulfur biogeochemistry-Past and present: Boulder, Colorado, Geol. Soc. Amer. Spec. Paper, v.379, pp.117–134.

    Article  Google Scholar 

  • Shao, L., Jones, T., Gayer, R., Dai, S., Li, S., Jiang, Y. and Zhang, P. (2003) Petrology and geochemistry of the high-sulphur coals from the Upper Permian carbonate coal measures in the Heshan coalfield, southern China. Internat. Jour. Coal Geol., v.55, pp.1–26.

    Article  Google Scholar 

  • Sharma, N.L. and Ram, K.S.V. (1963) Introduction to the geology of coal and Indian coalfields. Oriental Publishers, Jaipur.

    Google Scholar 

  • Singh, M.P. and Singh, A.K. (2000) Petrographic characteristics and depositional conditions of Eocene coals of platform basins, Meghalaya, India. Internat. Jour. Coal Geol., v.42, pp.315–356.

    Article  Google Scholar 

  • Singh, M.P. and Singh, A.K. (2006) Morphology, maceral association and distribution of pyrite in the Tertiary coals of northeast India: a proposal for the classification of high sulphur coals. Jour. Geol. Soc. India, v.67, pp.783–801.

    Google Scholar 

  • Southam, G., Donald, R., Röstad, A. and Brock, C. (2001) Pyrite discs in coal: Evidence for fossilized bacterial colonies. Geology, v.29, pp.45–50.

    Article  Google Scholar 

  • Stachura, E. and Ratajczak, T. (2004) The origin of pyrite in Miocene lignite from the “Balchatów” deposit. Zeszyt, v.24, pp.361–364.

    Google Scholar 

  • Studley, S.A., Ripley, E.M., Elswick, E.R., Doris, M.J., Fong, J., Finkelstein, D. and Pratt, L.M. (2002) Analysis of sulfides in whole rock matrices by elemental analyzer-continuous flow isotope ratio mass spectrometry. Chem. Geol., v.192, pp.141–148.

    Article  Google Scholar 

  • Sunagawa, I., Endo, Y. and Nakai, N. (1971) Hydrothermal synthesis of framboidal pyrite. Soc. Mineral. Geol., Japan (Spec. Issue), v.2, pp.10–14.

    Google Scholar 

  • Sweeney, R.E. and Kaplan, I.R. (1973) Pyrite framboid formation: laboratory synthesis and marine sediments. Econ. Geol., v.68, pp.618–634.

    Article  Google Scholar 

  • Taylor, G.R. (1982) A mechanism for framboid formation as illustrated by a volcanic exhalative sediment. Miner. Deposita, v.17, pp.23–36.

    Article  Google Scholar 

  • Turner, B.R. and Richardson, D. (2004) Geological controls on the sulphur conent of coal seams in the Northumberland coalfield, northeast England Internat. Jour. Coal Geol., v.60, pp.169–196.

    Article  Google Scholar 

  • Ward, C.R. (2002) Analysis and significance of mineral matter in coal seams. Internat. Jour. Coal Geol., v.50, pp.135–168.

    Article  Google Scholar 

  • Ward, C.R., Li, Z. and Gurba, L.W. (2007) Variations in elemental composition of macerals with vitrinite reflectance and organic sulphur in the Greta coal measures, New South Wales, Australia. Internat. Jour. Coal Geol., v.69, pp.205–219.

    Article  Google Scholar 

  • Widodo, S., Oschmann, W., Bechtel, A., Sachsenhofer, R.F., Anggayana, K. and Puettmann, W. (2010) Distribution of sulfur and pyrite in coal seams from Kutai basin (east Kalimantan, Indonesia): Implications for paleoenvironmental conditions. Internat. Jour. Coal Geol., v.81, pp.151–162.

    Article  Google Scholar 

  • Wilkin, R.T. and Barnes, H.L. (1997) Formation processes of framboidal pyrite. Geochim. Cosmochim. Acta, v.61, pp.323–339.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibhuranjan Nayak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nayak, B. Mineral matter and the nature of pyrite in some high-sulfur tertiary coals of Meghalaya, northeast India. J Geol Soc India 81, 203–214 (2013). https://doi.org/10.1007/s12594-013-0023-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-013-0023-9

Keywords

Navigation