Skip to main content

Advertisement

Log in

Identification of landslide susceptible villages around Kalsubai region, Western Ghats of Maharashtra using geospatial techniques

  • Research Article
  • Published:
Journal of the Geological Society of India

Abstract

Heavy rainfall triggered landslides are on the rise along the Western Ghats making it a matter of priority to identify landslide-prone areas well in advance. The present effort is aimed at identifying landslide susceptible villages (LSV) around the Kalsubai region of Deccan volcanic province (DVP), Maharashtra, India from 8 weighted landslide parameters- rainfall, slope, lithology, land use and land cover (LULC), soil properties, relative relief, aspect and lineament. These parameters were combined with advanced remote sensing (RS) data and processed in geographical information system (GIS) as well as in image processing software, which are an integral part of geospatial techniques. Out of the total 59 villages, the study identified 9 villages are situated in very high, 13 in high, 12 in moderate, 11 in low and 14 in very low risk zones. Our data reveals incessant heavy rains and steep slopes are the dominant factors in triggering landslides, exacerbated by anthropogenic activity prevalent in the study area. The spatial and non-spatial database created will help to take effective steps in preventing and/or mitigating landslide disasters in the study area. The methodology can be applied to identify other landslide prone areas in a cost effective way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aher, S.P., Parande, A. N. and Deshmukh, P. P. (2011) A Geomatics of the Image Processing: Image Georeferencing, National Technical Symposium on Advancements in Computing Technologies, Proceedings published by Int. J. Computer Applications, pp.20–23.

    Google Scholar 

  • Aher S. P, and Dalvi S. N. (2012) Remote Sensing Technique for Monitoring the Glacier Retreating Process and Climatic Changes Study. Indian Streams Res. Jour., v.2(8), pp.2–6.

    Google Scholar 

  • Aher S. P, Bairagi S.I, Deshmukh P. P. and Gaikwad R.D. (2012) River change detection and bank erosion identification using topographical and remote sensing data. Int. J. Applied Inf. Sys., v.2(3), pp.1–7.

    Google Scholar 

  • Aher S. P, Shinde S. D, Jarag A. P, Mahesh Babu J.L.V. and Gawali P. B. (2014) Identification of lineaments in the Pravara basin from ASTERDEM data and satellite images for their geotectonic implication. Int. R. J. Earth Sci., v. 2(7), pp. 1–5.

    Google Scholar 

  • Ahmed, M.Y., Mohamed Al and Biswajeet, P. (2014). Landslide susceptibility mapping at Al-Hasher Area, Jizan (Saudi Arabia) using GIS-based frequency ratio and index of entropy models. Geosciences Journal, The Association of Korean Geoscience Societies and Springer, DOI 10.1007/s12303-014-0032-8.

    Google Scholar 

  • Akole. (2014) Rain gauge station: Harichandranagar, Akole.

    Google Scholar 

  • Arora M. K, Das Gupta A. S, Gupta R. P. (2004). An artificial neural network approach for landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas. Int. J. Remote Sens., v.25(3), pp.559–572.

    Article  Google Scholar 

  • Athavale, R. N. and Anjaneyulu G. R. (1972). Palaeomagnetic results on the Deccan Trap lavas of the Aurangabad region and their tectonic significance. Tectonophys, v. 14, pp. 87–103.

    Article  Google Scholar 

  • Baum, R. L, Savage W. Z. and Godt J. W. (2002) TRIGRS-A Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis. U.S. Geological Survey Open-File Report 02-0424, 64 pp. http://pubs.usgs.gov/of/2002/ofr-02-424/.

    Google Scholar 

  • Beane, J.E., Turner, C.A., Hooper, P.R., Subbarao, K.V. and Walsh, J.N. (1986). Stratigraphy, composition and form of the Deccan basalts, Western Ghats, India. Bulletin of Volcanology, v. 48, pp.61–83.

    Article  Google Scholar 

  • Brabb, E. E. (1991) The world landslide problem. Episodes, v.14(1), pp. 52–61.

    Google Scholar 

  • Burrough, P. A., and McDonell, R. A. (1998) Principles of Geographical Information Systems (Oxford University Press, New York), 190p.

    Google Scholar 

  • Campanile, D., Nambiar, C.G., Bishop, P., Widdowson, M. and Brown, R. (2008). Sedimentation record in the Konkan–Kerala Basin: Implications for the evolution of the Western Ghats and the Western Indian passive margin. Basin Res.h, v.20, pp.3–22.

    Article  Google Scholar 

  • Catherine, J.K. Gahalaut, K. and Gahalaut, V. K. (2007) Role of flexure in earthquake triggering along the Western Ghat escarpment India. Jour.Asian Earth Sci., v.31, pp.104–111.

    Article  Google Scholar 

  • Chand, S. and Subrahmanyam, C. (2003) Rifting between India and Madagascar-mechanism and isostacy. Earth Planet. Sci. Lett., v.210, pp.317–332.

    Article  Google Scholar 

  • Coe, J.A., Godt, J.W., Baum, R.L., Bucknam, R.C. and Michael, J.A. (2004) Landslide susceptibility from topography in Guatemala. In: Lacerda et al. (Eds.), Landslides evaluation and stabilization. Taylor and Francis Group, London, pp.69–78.

    Google Scholar 

  • Cox, K.G. and Hawkesworth, C.J. (1985) Geochemical stratigraphy of the Deccan Traps at Mahabaleshwar, Western Ghats, India, with implications for open system magmatic processes. Jour. Petrology, v.26, pp.355–377.

    Article  Google Scholar 

  • Cruden D.M., Varnes D. J. (1996). Landslide types and processes. In: Turner A.K. and Shuster R.L. (Eds.), Landslides: Investigation and Mitigation. Transp. Res. Board, Spec. Report, no.247, pp.36–75.

    Google Scholar 

  • Dai, F.C. and Lee, C.F. (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, v.42, pp.213–238.

    Article  Google Scholar 

  • Dai, F.C., Lee, C.F. and Ngai, Y.Y. (2002) Landslide risk assessment and management: an overview. Engg. Geol., v.64, pp.65–87.

    Article  Google Scholar 

  • Dattilo, G. and Spezzano, G. (2003). Simulation of a cellular landslide model with CAMELOT on high performance computers. Parallel Comput., v.29, pp.1403–1418.

    Article  Google Scholar 

  • Dikau, R., Brunsden, D., Schrott, L. and Ibsen, M.L. (Eds.) (1996) Landslide Recognition: Identification, Movement and Causes. John Wiley and Sons, Chichester. 251p.

    Google Scholar 

  • EM-DAT. (2010) The OFDA/CRED International Disaster Database. Université Catholique de Louvain. Brussels. http://www.emdat.be/.

    Google Scholar 

  • Ercanoglu, M., Gokceoglu, C. and Asch, T.W.J.V. (2004) Landslide Susceptibility Zoning North of Yenice (NW Turkey) by multivariate statistical techniques. Natural Hazards, v.32, pp.1–23.

    Article  Google Scholar 

  • Fabbri, A.G., Chung, C.F., Cendrero, A. and Remondo, J. (2003) Is prediction of future landslides possible with GIS? Natural Hazards, v.30, pp.487–499.

    Article  Google Scholar 

  • Fernandez, T., Irigaray, C., El Hamdouni, R. and Chacon, J. (2003) Methodology for landslide susceptibility mapping by means of a GIS, application to the contraviesa area (Granada, Spain). Natural Hazards, v.30, pp.297–308.

    Article  Google Scholar 

  • Gokarn, S.G., Gupta, G., Rao, C.K. and Selvaraj, J. (2003) Some interesting observations on the tectonics in the Deccan Volcanic Province observed from magnetotelluric studies. Jour.Virtual Explorer, v.12, pp.55–65.

    Google Scholar 

  • Gorsevski, P. V, Jankowski, P. and Gessler, P. E. (2006) An heuristic approach for mapping landslide hazard by integrating fuzzy logic with analytic hierarchy process. Control Cybernetics, v.35(1), pp.21–46.

    Google Scholar 

  • Gunnell, Y. (2001). Dynamics and kinematics of rifting and uplift at the western continental margin of India: Insights from geophysical and numerical models. Mem. Geol. Soc. India, no.47, pp.475–496.

    Google Scholar 

  • Gunnell, Y. and Fleitout, L. (2000) Morphotectonic evolution of the Western Ghats India. In: Geomorphology and Global Tectonics (ed.) Summerfield M (Chichester: John Wiley & Sons) pp.321–338.

    Google Scholar 

  • Gutiérrez, F., Soldati, M., Audemard, F. and Bãlteanu, D. (2010) Recent advances in landslide investigation: Issues and perspectives. Geomorphology, v.124, pp.95–101.

    Article  Google Scholar 

  • Ho Jui-Yi, Lee Kwan Tun, Chang Tung-Chiung, Wang Zhao-Yin, Liao Yu-Hsun. (2012) Influences of spatial distribution of soil thickness on shallow landslide prediction. Engg. Geol., v.124, pp.38–46.

    Article  Google Scholar 

  • Hong Yang and Adler Robert, F. (2008) Predicting global landslide spatiotemporal distribution: Integrating landslide susceptibility zoning techniques and real-time satellite rainfall estimates. Internat. Jour. Sediment Res., v.23, pp.249–257.

    Article  Google Scholar 

  • Hungr, O., Evans, S.G., Bovis, M. and Hutchinson, J.N. (2001) Review of the classification of landslides of the flow type. Environ. Engg. Geosci., VII, pp.221–238.

    Article  Google Scholar 

  • Joshi, V. U. and Nagare, V. (2009) Land-use change detection along the Pravara River basin in Maharashtra, using Remote Sensing and GIS techniques. AGD Landscape and Environment, v.3(2), pp.71–86.

    Google Scholar 

  • Kailasam, L.N. (1975) Epeirogenic studies in India with reference to vertical movements. Tectonophysics, v.29, pp.505–521.

    Article  Google Scholar 

  • Kale, Vishwas, S. and Shejwalkar, N. (2008) Uplift along the western margin of the Deccan Basalt Province: Is there any geomorphometric evidence? Jour. Earth Syst. Sci., v.117(6), pp.959–971.

    Article  Google Scholar 

  • Keefer, D.K. and Wilson, R.C. (1987) Real-time landslide warning during heavy rainfall. Science, v.238(13), pp.921–925.

    Article  Google Scholar 

  • Kuriakose, S.L., Sankar, G. and Muraleedharan, C. (2009) History of landslide susceptibility and a chorology of landslide-prone areas in the Western Ghats of Kerala, India. Environ. Geol., v.57, pp.1553–1568.

    Article  Google Scholar 

  • Larsen, M.C. and Torres Sanchez, A.J. (1998) The frequency and distribution of recent landslides in three montane tropical regions of Puerto Rico. Geomorphology, v.24, pp.309–331.

    Article  Google Scholar 

  • Lee S. and Min K. (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ. Geol., v.40, pp.1095–1113.

    Article  Google Scholar 

  • Lightfoot, P.C., Hawkesworth, C.J., Devey, C.W., Rogers, N.W. and van Calsteren, P.W.C. (1990) Source and differentiation of Deccan Trap lavas: implications of geochemical and mineral chemical variations. Jour. Petrol., v.31, pp.1165–1200.

    Article  Google Scholar 

  • Mahadevan, T.M. and Subbarao, K.V. (1999). Sesmicity of the Deccan Volcanic Province–An evaluation of some endogenous factors; In: K.V. Subbarao (Ed.), Deccan Volcanic Province. Mem. Geol. Soc. India, no.43, pp.453–484.

    Google Scholar 

  • Mathew John, Jha, V.K. and Rawat, G.S. (2007) Weights of evidence modelling for landslide hazard zonation mapping in part of Bhagirathi valley, Uttarakhand. Curr. Sc., v.92(5), pp.628–638.

    Google Scholar 

  • Mathur, S.M. (1991) Physical Geology of India, National book trust, New Delhi, pp.83–84.

    Google Scholar 

  • Mishra, D.C., Laxman, G. and Arora, K. (2004) Large-wavelength gravity anomalies over the Indian continent: Indicators of lithospheric flexure and uplift and subsidence of Indian Peninsular Shield related to isostasy. Curr. Sci., v.86, pp.861–867.

    Google Scholar 

  • Mukhopadhyay, R., Rajesh, M., De, S., Chakraborty, B. and Jauhari, P. (2008) Structural highs on the western continental slope of India: Implications for regional tectonics. Geomorphology, v.96, pp.48–61.

    Article  Google Scholar 

  • Pasuto, A. and Soldati, M. (1996) Landslide hazard. In: Panizza, M. (Ed.), Environmental Geomorphology, Amsterdam, pp.64–88.

    Google Scholar 

  • Paul D.K., Ray A., Das B., Patil S.K. and Biswas S.K. (2008) Petrology, geochemistry and paleomagnetism of the earliest magmatic rocks of Deccan Volcanic Province, Kutch, Northwest India. Lithos, v.102(1), pp.237–259.

    Article  Google Scholar 

  • Peng, Z.X., Mahoney, J.J., Hooper, P.R., Harris, C., Beane, J.E. (1994) A role for lower continental crust in flood basalt genesis? Isotopic and incompatible element study of the lower six formations of the western Deccan Traps. Geochimica et Cosmochimica Acta, v.58, pp.267–288.

    Article  Google Scholar 

  • Peshwa, V.V. and Kale, V.S. (1987) Role of remote sensing in the detection of potential sites for landslides/rockfalls in the Deccan Trap lava terrain of western India. Environmental Geotechnics and Problematic Soils and Rocks; Balkema, Rotterdam; pp.367–374.

    Google Scholar 

  • Pourghasemi, H.R., Pradhan, B., Gokceoglu, C., and Moezzi, K.D. (2012) Landslide Susceptibility Mapping Using a Spatial Multi Criteria Evaluation ModelatHaraz Watershed, Iran. Terrigenous Mass Movements, Chapter 2, pp.23–49. DOI: 10.1007/978-3-642-25495-6_2.

    Chapter  Google Scholar 

  • Powar, K.B. (1981). Lineament fabric and dyke pattern in the western part of the Deccan Volcanic Province. Mem. Geol. Soc. India, no.3, pp.45–57.

    Google Scholar 

  • Powar, K.B. (1993) Geomorphological evolution of Konkan coastal belt and adjoining Sahyadri uplands with reference to Quaternary uplift. Curr. Sci., v.64, pp.793–796.

    Google Scholar 

  • Radhakrishna, B.P. (1993) Neogene uplift and geomorphic rejuvenation of the Indian peninsula; Curr. Sci., v.64, pp.787–793.

    Google Scholar 

  • Radhakrishna, B.P. (2001) The Mysore plateau: Its structural and physiographical evolution: Bull. Mysore Geologists Association, v.3, pp. 1–53 (1954); reprinted in Gunnell Y., and Radhakrishna B.P., eds., Sahyadri: The great escarpment of the Indian subcontinent: Bangalore. Mem. Geol. Soc. India, no.47(1-2), pp.71-82.

    Google Scholar 

  • Radhakrishna, B.P. (1989) Suspect tectono-stratigraphic terrane elements in the Indian subcontinent. Jour. Geol. Soc. India, v.34, pp.1–24.

    Google Scholar 

  • Saha, A.K., Gupta, R.P., Sarkar, I, Arora, M.K. and Csaplovics, E. (2005) An approach for GIS-based statistical landslide susceptibility zonation-with a case study in the Himalayas. Landslides, v.2, pp.61–69.

    Article  Google Scholar 

  • Sajinkumar, K.S., Anbazhagan, S., Pradeepkumar, A.P., Rani, V.R. (2011) Weathering and landslide occurrences in parts of Western Ghats, Kerala. Jour. Geol. Soc. India, v.78(3), pp.249–257.

    Article  Google Scholar 

  • Sheth, H.C. (2007) Plume-related regional pre-volcanic uplift in the Deccan Traps: Absence of evidence, evidence of absence. In: Plates, Plumes, and Planetary Processes (Eds) Foulger G.R. and Jurdy D.M. Geol. Soc. Amer. Spec. Pap., v.430, pp.785–813.

    Google Scholar 

  • Singh, Yudhbir, Vinay Sharma, S.K., Pandita, G.M., Bhat, K.K. and Thakur, Sham S. Kotwal. (2014) Investigation of Landslide at Sangaldan Near Tunnel-47, on Katra-Qazigund Railway Track, Jammu and Kashmir. Jour. Geol. Soc. India, v.84, pp.686–692.

    Article  Google Scholar 

  • Somayajulu, B.L.K., Martin, J.M., Eisma, D., Thomas, A.J., Borole, D.V. and Rao, K.S. (1993) Geochemical studies in the Godavri estuary, India. Mar. Chem., v.43, pp. 83–93.

    Google Scholar 

  • Subbarao, K.V. (ed.) (1988). Deccan Flood Basalts. Mem. Geol. Soc. India, no.10, pp.393.

    Google Scholar 

  • Subbarao, K.V. and Hooper, P.R. (1988). Reconnaissance map of the Deccan Basalt Group in the Western Ghats, India. Mem. Geol. Soc. India, no.10, pp.

    Google Scholar 

  • Subrahmanya, K.R. (1998) Tectono-Magmatic Evolution of the West Coast of India; Gondwana Res., v.1, pp.319–327.

    Article  Google Scholar 

  • Sundarajan, P. and Sajinkumar, K.S. (2012). Detailed site specific study of KunnamangalamVayal landslide, Wayanad district, Kerala. Geol. Surv. India, v.42 (unpublished report).

    Google Scholar 

  • Terlien, M.T.J. (1998) The determination of statistical and deterministic hydrological landslide-triggering thresholds, Environ. Geol., v.35, pp.124–130.

    Article  Google Scholar 

  • Thigale, S.S. (1983) Impact of physical determinants on groundwater occurrence in the aggraded land-on groundwater occurrence in the aggraded landforms associated with the Western Ghats of Maharashtra, India. Proc. Internat. Conf. Groundwater and Man, Sidney, v.3, pp.319–327.

    Google Scholar 

  • Thigale, S.S. and Umrikar, B. (2007). Disastrous landslide episode of July 2005 in the Konkan plain of Maharashtra, India with special reference to tectonic control and hydrothermal anomaly. Curr. Sci., v.92(3), p.383–386.

    Google Scholar 

  • Thigale, S.S. and Khandge Abhijit, S. (1996) Generation of database for preparation of landslide hazard zonation map of the Western Chats of Maharashtra, India. Geoinformatics, v.7(1-2), pp.61–68.

    Article  Google Scholar 

  • Thorat, S.K., Deshmukh, P.P., Aher, P.P., Wawale, S.G. and Aher, S.P. (2012) Opportunities of agro-tourism in Akole tehsil of Ahmednagar district. Golden Research Thoughts, v.1(7), pp.1–4.

    Google Scholar 

  • Tiwari, P.K., Surve, G. and Mohan, G. (2006) Crustal constraints on the uplift mechanism of the Western Ghats of India. Geophys. Jour. Internat., v.167, pp.1309–1316.

    Article  Google Scholar 

  • Valdiya, K.S. (2001) Tectonic resurgence of the Mysore plateau and surrounding regions in cratonic southern India. Curr. Sci., v.81, pp.1068–1089.

    Google Scholar 

  • Veeraswamy, K. and Raval, U. (2005). Remobilization of the palaeoconvergent corridors hidden under the Deccan trap cover and some major stable continental region earthquakes; Curr. Sci., v.89 pp.522–530.

    Google Scholar 

  • Wadia, D.N. (1975) Geology of India, fourth ed., Tata McGraw-Hill, New Delhi, p.508.

    Google Scholar 

  • Widdowson, M. (1997) Tertiary palaeosurfaces of the SW Deccan western India: Implications for passive margin uplift; In: Widdowson M. (Ed.), Palaeosurfaces: Recognition reconstruction and palaeoenvironmental interpretation. Geol. Soc. London, Spec. Publ., v.120, pp.221–248.

    Google Scholar 

  • Widdowson, M. and Cox K. G. (1996) Uplift and erosional history of the Deccan Traps India: Evidence from laterites and drainage patterns of the Western Ghats and Konkan coast. Earth Planet. Sci. Lett., v.137, pp. 57–69.

    Google Scholar 

  • Widdowson, M. and Mitchell, C. (1999). Large-scale stratigraphical, structural, geomorphological constraints for earthquakes in the southern Deccan Traps India: The case for denudationally driven sesmicity. In: K.V. Subbarao (Ed.) Deccan Volcanic Province. Mem. Geol. Soc. India, no.43, pp.245–274.

    Google Scholar 

  • Wilson, R.C. and Wieczorek, G. F. (1995) Rainfall thresholds for the initiation of debris flows at La Honda, California. Environ. Engg. Geoscience, v.1(1), pp.11–27.

    Article  Google Scholar 

  • Yang, H., Robert, A. and George, H. (2007) Use of satellite remote sensing data in the mapping of global landslide susceptibility, natural hazards, DOI 10.1007/s11069-006-9104-z.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Lakshmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gawali, P.B., Aher, S.P., Lakshmi, B.V. et al. Identification of landslide susceptible villages around Kalsubai region, Western Ghats of Maharashtra using geospatial techniques. J Geol Soc India 90, 301–311 (2017). https://doi.org/10.1007/s12594-017-0718-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-017-0718-4

Navigation