Skip to main content
Log in

Paleoweathering and Paleoclimatic Reconstructions using Neoproterozoic Paleosol in the Eastern Margin of the Pranhita-Godavari Basin, India

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

A thin, weakly-developed palaeosol horizon within the Neoproterozoic Sullavai sandstone in the eastern margin of the Pranhita-Godavari basin was studied. Field observations, thinsection studies and geochemical analyses of the palaeosol horizon were carried out to reconstruct the palaeo-weathering and palaeoclimatic conditions. The palaeosol developed on sandstone parent rock. Morphological features of this palaeosol are not distinct, perhaps due to very ancient nature as well as thin occurrence. A few of which that can be mentioned include weakly developed peds and calcareous nodules of size <1 cm -.2 cm. The lower part of the profile preserves incipient parent rocklamination. Major micromorphological features of this palaeosol include weakly-developed sub-angular blocky structure and redoximorphic features showing redox enrichment and redox depletion of Fe oxides and oxyhydroxides. XRD analysis of the palaeosol reveals the presence of glauconite and illite, suggesting deposition of sediments under shallow marine conditions, and prevalence of cold climate, respectively. This is also supported from Chemical Index of Alteration (CIA)and presence of illite. Further, Chemical Index of Weathering (CIW), Clayeness, and Salinization data of the palaeosol clearly suggests an environment where chemical weathering was feeble and cold (11-14°C) palaeo-temperature. XRF results show abundance of K, Ca and Mg which suggest the area was poorly drained along with cooler palaeoclimate during the late Neoproterozoic. Al2O3 concentration at the middle of the soil profile suggests weakly-developed B-horizon, however it is hardly observed in the field. Parent material, cold climate and less time of exposure only resulted in the formation of a thin and weaklydeveloped soil profile. This ancient soil may represent an unconformity at the basin boundary suggesting a local regression and exposure of the fluvio-marine deposits along the basin boundary. It further needs detailed such studies at various spatiotemporal basinal scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, P.L., Minch, J.A. and Peterson, G.L. (1976) Pre–Eocene paleosol south of Tijuana, Baja California, Mexico. Jour. Sediment. Res., v.46(2), pp.355–361.

    Google Scholar 

  • Amarasinghe, U., Chaudhuri, A., Collins, A.S., Deb, G., Patranabis–Deb, S., (2015) Evolving provenance in the Proterozoic Pranhita–Godavari Basin, India. Geoscience Frontiers, v.6(3), pp.453–463.

    Article  Google Scholar 

  • Amorosi, A. (1997) Detecting compositional, spatial, and temporal attributes of glaucony: a tool for provenance research. Sedimentary Geol., v.109(1–2), pp.135–153.

    Article  Google Scholar 

  • Arndorff, L. (1993) Lateral relations of deltaic palaeosols from the Lower Jurassic Rønne Formation on the island of Bornholm, Denmark. Palaeogeo., Palaeoclimat., Palaeoeco., v.100(3), pp.235–250.

    Article  Google Scholar 

  • Birkeland, P.W. (1999) Soils and Geomorphology, (3rd Ed.). Oxford University Press, New York. 448p.

    Google Scholar 

  • Bhargava, O.N., Kaur, G. and Deb, M. (2011) A Paleoproterozoic paleosol horizon in the Lesser Himalaya and its regional implications. Jour. Asian Earth Sci., v.42(6), pp.1371–1380.

    Article  Google Scholar 

  • Boggs, S. (2006) Principles of Sedimentology and Stratigraphy, 4th edition. Pearson Prentice Hall, Upper Saddle River, New Jersey. 662p.

    Google Scholar 

  • Buol, S.W., Hole, F.D., McCracken, R.J., Southard, R.J. (1997) Soil Genesis and Classification (4th edn.), Iowa State University Press, Ames, 527p.

    Google Scholar 

  • Chaudhuri, A., Howard, J.D. (1985) Ramgundam Sandstone; a middle Proterozoic shoal–bar sequence. Jour. Sediment. Res., v.55(3), pp.392–397.

    Google Scholar 

  • Chaudhuri, A.K., Saha, D., Deb, G.K., Deb, S.P., Mukherjee, M.K. and Ghosh, G. (2002) The Purana basins of southern cratonic province of India–a case for Mesoproterozoic fossil rifts. Gondwana Res., v.5(1), pp.23–33.

    Article  Google Scholar 

  • Conrad, J.E., Hein, J.R., Chaudhuri, A.K., Patranabis–Deb, S., Mukhopadhyay, J., Deb, G.K., Beukes, N.J. (2011) Constraints on the development of Proterozoic basins in central India from 40Ar/39Ar analysis of authigenic glauconitic minerals. Geol. Soc. Amer. Bull., v.123(1–2), pp.158–167.

    Article  Google Scholar 

  • Crookshank, H. (1963) Geology of southern Bastar and Jeypore from the Bailadila to Easternghats. Mem. Geol. Surv. India, v.87, p.149.

  • Deb, G. (2003) Deformation pattern and evolution of the structures in the Penganga Group, the Pranhita–Godavari Valley, India: probable effects of Greenvillian movement on a Mesoproterozoic basin. Jour. Asian Earth Sci., v.21(6), pp.567–577.

    Article  Google Scholar 

  • Dora, M.L. and Randive, K.R. (2015) Chloritisation along the Thanewasna Shear Zone, Western Bastar Craton, Central India: Its Genetic Linkage to Cu–Au Mineralisation. Ore Geol. Rev., v.70, pp.151–172.

    Article  Google Scholar 

  • Driese, S.G., Srinivasan, K., Mora, C.I., Stapor, F.W. (1994) Paleoweathering of Mississippian Monteagle Limestone preceding development of a lower Chesterian transgressive systems tract and sequence boundary, middle Tennessee and northern Alabama. Geol. Soc. Amer. Bull., v.106(7), pp.866–878.

    Article  Google Scholar 

  • Driese, S.G., Medaris Jr, L.G., Ren, M., Runkel, A.C. and Langford, R.P., (2007) Differentiating pedogenesis from diagenesis in early terrestrial paleoweathering surfaces formed on granitic composition parent materials. Jour. Geol., v.115(4), pp.387–406.

    Article  Google Scholar 

  • Driese, S.G., Nordt, L.C. (2013) New frontiers in paleopedology and terrestrial paleoclimatology: paleosols and soil surface analog systems: In: Driese, S.G., Nordt, L.C. (Eds.), new frontiers in paleopedology and terrestrial paleoclimatology. SEPM, Spec. Publ., no.104, pp.1–3.

  • Driese, S.G. and Ashley, G.M. (2016) Paleoenvironmental reconstruction of a paleosol catena, the Zinj archeological level, Olduvai Gorge, Tanzania. Quaternary Res., v.85(1), pp.133–146.

    Article  Google Scholar 

  • Fastovsky, D.E., McSweeney, K. (1987) Paleosols spanning the Cretaceous–Paleogene transition, eastern Montana and western North Dakota. Geol. Soc. Amer. Bull., v.99(1), pp.66–77.

    Article  Google Scholar 

  • Feakes, C.R. and Retallack, G.J. (1988) Recognition and chemical characterization of fossil soils developed on alluvium; a Late Ordovician example. Geol. Soc. Amer. Spec. Papers, no.216, pp.35–48.

    Article  Google Scholar 

  • Fedo, C.M., Nesbitt, H.W., Young, G.M. (1995) Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, v.23(10), pp.921–924.

    Article  Google Scholar 

  • Galan, E. (2006) Genesis of clay minerals. Developments in clay science, 1, pp.1129–1162.

    Article  Google Scholar 

  • Ghosh, G., Saha, D. (2003) Deformation of the Proterozoic Somanpalli Group, Pranhita–Godavari valley, South India–implication for a Mesoproterozoic basin inversion. Jour. Asian Earth Sci., v.21(6), pp.579–594.

    Article  Google Scholar 

  • Gray, N.B. and Nickelsen, R.P. (1989) Pedogenic slickensides, indicators of strain and deformation processes in redbed sequences of the Appalachian foreland. Geology, v.17(1), pp.72–75.

    Article  Google Scholar 

  • Gregory, L.C., Meert, J.G., Bingen, B.A., Pandit, M.K., Torsvik, T.H. (2009) Paleo–magnetism and geochronology of the Malani igneous suite, Northwest India: implications for the configuration of Rodinia and the assembly of Gondwana. Precambrian Res., v.170(1), pp.13–26.

    Article  Google Scholar 

  • Hamer, J.M.M., Sheldon, N.D., Nichols, G.J., Collinson, M.E. (2007) Late Oligocene–early Miocene palaeosols of distal fluvial systems, Ebro Basin, Spain. Palaeogeo. Palaeoclimat. Palaeoeco., v.247(3), pp.220–235.

    Article  Google Scholar 

  • Harnois, L. (1988) The CIW index: A new chemical index of weathering. Sediment. Geol., v.55(3–4), pp.319–322.

    Article  Google Scholar 

  • Holland, H.D. (1984) The chemical evolution of the atmosphere and oceans: Princeton University Press. Princeton University Press, Princeton, New Jersey, 582p.

    Google Scholar 

  • Holland, H.D., Feakes, C.R., Zbinden, E.A. (1989) The Flin Flon paleosol and the composition of the atmosphere 1.8 BYBP. Amer. Jour. Sci., v.289(4), pp.362–389.

    Article  Google Scholar 

  • Holland, H.D. (1994) Early Proterozoic atmospheric change. In: Bengtson, S. (Ed.), Early Life on Earth: Nobel Symposium No. 84. Columbia University Press, New York.

    Google Scholar 

  • Johnson, H.D. (1975) Tide–and wave–dominated inshore and shoreline sequences from the late Precambrian, Finnmark, North Norway. Sedimentology, v.22(1), pp.45–74.

    Article  Google Scholar 

  • Klein, C. and Dutrow, B. (2008) Mineral Science. Hoboken.

    Google Scholar 

  • Kraus, M. (1999) Paleosols in calstic sedimentary rocks: their geologic applications. Earth Sci. Rev., v.47(1), pp.41–70.

    Article  Google Scholar 

  • Lander, R.H., Bloch, S., Mehta, S., Atkinson, C.D. (1991) Burial diagenesis of paleosols in the giant Yacheng gas field, People’s Republic of China: bearing on illite reaction pathways. Jour. Sediment. Res., v.61(2), pp.256–268.

    Google Scholar 

  • Li, Y.H. (2000) A Compendium of Geochemistry: from solar nebula to the human brain. Princeton University Press, Princeton, 475p.

    Google Scholar 

  • Liivamägi, S., Somelar, P., Vircava, I., Mahaney, W.C., Kirs, J. and Kirsimäe, K. (2015) Petrology, mineralogy and geochemical climofunctions of the Neoproterozoic Baltic paleosol. Precambrian Res., v.256, pp.170–188.

    Article  Google Scholar 

  • Maynard, J.B., 1992. Chemistry of modern soils as a guide to interpreting Precambrian paleosols. Jour. Geol., v.100(3), pp.279–289.

    Article  Google Scholar 

  • McRae, S.G. (1972) Glauconite. Earth Sci. Rev., v.8(4), pp.397–440.

    Article  Google Scholar 

  • Mitchell, R.L., Sheldon, N.D. (2009) Weathering and paleosol formation in the 1.1 Gakeweenawan Rift. Precambrian Res., 168(3), pp.271–283.

    Article  Google Scholar 

  • Mukhopadhyay, J., Crowley, Q.G., Ghosh, S., Ghosh, G., Chakrabarti, K., Misra, B., Heron, K. and Bose, S. (2014) Oxygenation of the Archean atmosphere: New paleosol constraints from eastern India. Geology, v.42(10), pp.923–926.

    Article  Google Scholar 

  • Munsell (2005) Munsell Soil Colour Charts: Matte Collection. Macbeth Division of Kollmorgen Corp., Baltimore.

    Google Scholar 

  • Nesbitt, H. W. and Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, v.299(5885), pp.715–717.

    Article  Google Scholar 

  • Nordt, L.C., Driese, S.G. (2012) New weathering index improves paleorainfall estimates from vertisols. Geology, v.38(5), pp.407–410.

    Article  Google Scholar 

  • Odin, G.S. and Fullagar, P.D. (1988) Chapter C4 geological significance of the glaucony facies. Developments in Sedimentology, 45, pp.295–332.

    Article  Google Scholar 

  • Odin, G.S. and Matter, A. (1981) De glauconiarum origine. Sedimentology, v.28(5), pp.611–641.

    Article  Google Scholar 

  • Pati, P. (2010) Large scale geological mapping of Archaean–Proterozoic boundary zone around Sukwasi, southeast of Heti PGE prospect, Chandrapur district, Maharashtra. Geological Survey of India, Training Institute, (Un Pub.).

    Google Scholar 

  • Pati, P., Parkash, B., Awasthi, A.K. and Jakhmola, R.P. (2012) Spatial and temporal distribution of inland fans/terminal fans between the Ghaghara and Kosi rivers indicate eastward shift of neotectonic activities along the Himalayan front. A study from parts of the upper and middle Gangetic plains, India. Earth Sci. Rev., v.115(4), pp.201–216.

    Google Scholar 

  • Prochnow, S.J., Nordt, L.C., Atchley, S.C., Hudec, M.R. (2006) Multi–proxy paleosol evidence for middle and late Triassic climate trends in eastern Utah. Palaeogeo. Palaeoclimat. Palaeoeco., v.232(1), pp.53–72.

    Article  Google Scholar 

  • Prothero, D.R. and Schwab, F. (2004) Sedimentary Geology. Macmillan.

    Google Scholar 

  • Retallack, G.J., Grandstaff, D., Kimberley, M. (1984) The promise and problems of Precambrian paleosols. Episodes, v.7(2), pp.8–12.

    Google Scholar 

  • Retallack, G.J. (1986) Reappraisal of a 2200 Ma–old paleosol near Waterval Onder, South Africa. Precambrian Res., v.32(2–3), pp.195–232.

    Article  Google Scholar 

  • Retallack, G.J. (1988) Field recognition of Paleosols. Geol. Soc. Amer. Spec. Paper, 216, pp.1–2.

    Article  Google Scholar 

  • Retallack, G.J. (1992) How to find a Precambrian paleosol. In Early Organic Evolution (pp.16–30). Springer Berlin Heidelberg.

    Google Scholar 

  • Retallack, G. (1997) A Colour Guide to Paleosols. JohnWiley and Sons, New York.

    Google Scholar 

  • Retallack, G.J. (2000) Depth to pedogenic carbonate horizon as a paleoprecipitation indicator? comment and reply comment. Geology, v.28(6), pp.572–573.

    Article  Google Scholar 

  • Retallack, G.J. (2001) Cenozoic expansion of grasslands and climatic cooling. Jour. Geol., v.109(4), pp.407–426.

    Article  Google Scholar 

  • Retallack, G.J. (2013) Ediacaran life on land. Nature, v.493(7430), p.89.

    Google Scholar 

  • Ruxton, B.P. (1968) Measures of the degree of chemical weathering of rocks. Jour. Geol., v.76(5), pp.518–527.

    Article  Google Scholar 

  • Singh, S., Awasthi, A.K., Parkash, B. and Kumar, S. (2013) Tectonics or climate: What drove the Miocene global expansion of C4 grasslands? Internat. Jour. Earth Sci., v.102(7), pp.2019–2031.

    Google Scholar 

  • Singh, S., Parkash, B. and Awasthi, A.K. (2015) Tectono–geomorphic and environmental set–up deduced during deposition of Mio–Pleistocene sediments in NW Himalaya, India. Catena, v.126, pp.173–188.

    Article  Google Scholar 

  • Singh, S., Ghosh, P. and Khanna, Y. (2017) Need for re–apprehension of basin tectono–depositional set–up during initial stage of Himalayan orogeny from pedogenic evidences. Catena, v.156, pp.102–112.

    Article  Google Scholar 

  • Sheldon, N.D., Retallack, G.J., Tanaka, S. (2002) Geochemical Climofunctions from North American Soils and Application to Paleosols across the Eocene–Oligocene Boundary in Oregon. Jour. Geol., v.110(6), pp.687–696.

    Article  Google Scholar 

  • Sheldon, N.D. (2003) Pedogenesis and geochemical alteration of the picture gorge subgroup, Columbia River Basalt, Oregon. Geol. Soc. Amer. Bull., v.115(11), pp.1377–1387.

    Article  Google Scholar 

  • Sheldon, N.D. (2006) Precambrian paleosols and atmospheric CO2 levels. Precambrian Res., v.147(1), pp.148–155.

    Article  Google Scholar 

  • Sheldon, N.D., Tabor, N.J. (2009) Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth Sci. Rev., v.95(1), pp.1–52.

    Article  Google Scholar 

  • Soreghan, G.S., Elmore, R.D., Katz, B., Cogoini, M., Banerjee, S. (1997) Pedogenically enhanced magnetic susceptibility variations preserved in Paleozoic loessite. Geology, v.25(11), pp.1003–1006.

    Article  Google Scholar 

  • Tandon, S.K., Sood, A., Andrews, J.E., Dennis, P.F. (1995) Palaeoenvironments of the dinosaur–bearing Lameta Beds (Maastrichian), Narmada valley, central India. Palaeogeo. Palaeoclimat. Palaeoeco., v.117(3–4), pp.153–184.

    Google Scholar 

  • Tandon, S.K. and Gibling, M.R. (1997) Calcretes at sequence boundaries in Upper Carboniferous cyclothems of the Sydney Basin, Atlantic Canada. Sediment. Geol., v.112(1–2), pp.43–67.

    Article  Google Scholar 

  • Torsvik, T.H., Carter, L.M., Ashwal, L.D., Bhushan, S.K., Pandit, M.K., Jamtveit, B. (2001) Rodinia refined or obscured: palaeomagnetism of the Malani igneous suite(NW India). Precambrian Res., v.108(3), pp.319–333.

    Article  Google Scholar 

  • Valdiya, K.S. (2010) The making of India: Geodynamic Evolution.Macmillan Publishers India Ltd, New Delhi, 816p.

    Google Scholar 

  • Varela, A.N., Raigemborn, M.S., Richiano, S., White, T., Poiré, D.G. and Lizzoli, S. (2017) Late Cretaceous paleosols as paleoclimate proxies of high–latitude Southern Hemisphere: Mata Amarilla Formation, Patagonia, Argentina. Sediment. Geol., v.363, pp.83–95.

    Article  Google Scholar 

  • Weaver, C.E. (1956) A Discussion on the Origin of Clay Minerals in Sedimentary Rocks. Clays and Clay Minerals, v.5, pp.159–173.

    Article  Google Scholar 

  • Weaver, C.E. (1968) Relations of composition to structure of dioctahedral 2: 1 clay minerals. Clays and Clay Minerals, v.16, pp.51–61.

    Article  Google Scholar 

  • Webb, G.E. (1994) Paleokarst, paleosol, and rocky–shore deposits at the Mississippian–Pennsylvanian unconformity, northwestern Arkansas. Geol. Soc. Amer. Bull., v.106(5), pp.634–648.

    Article  Google Scholar 

  • Wright, V.P., 1994. Paleosols in shallow marine carbonate sequences. Earth–Science Reviews, 35(4), pp.367–395.

    Google Scholar 

  • Wright, V.P., Platt, N.H. (1995) Seasonal wetland carbonate sequences and dynamic catenas: a re–appraisal of palustrine limestones. Sediment. Geol., v.99(2), pp.65–71.

    Article  Google Scholar 

  • Young, G.M. and Nesbitt, H.W. (1998) Processes controlling the distribution of Ti and Al in weathering profiles, siliciclastic sediments and sedimentary rocks. Jour. Sediment. Res., v.68(3), pp.448–455.

    Article  Google Scholar 

  • Zbinden, E.A., Holland, H.D., Feakes, C.R., Dobos, S.K. (1988) The Sturgeon Falls paleosol and the composition of the atmosphere 1.1Ga BP. Precambrian Res., v.42(1–2), pp.141–163.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pitambar Pati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Pati, P., Dora, M.L. et al. Paleoweathering and Paleoclimatic Reconstructions using Neoproterozoic Paleosol in the Eastern Margin of the Pranhita-Godavari Basin, India. J Geol Soc India 92, 201–208 (2018). https://doi.org/10.1007/s12594-018-0982-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-018-0982-y

Navigation