Skip to main content
Log in

Analysis of an M[X]/G/1 unreliable retrial G-queue with orbital search and feedback under Bernoulli vacation schedule

  • Theoretical Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

In this paper, we consider a batch arrival retrial queue with feedback under Bernoulli vacation schedule, where the busy server is subjected to breakdown due to the arrival of negative customers. Any arriving batch of positive customers finds the server free, one of the customers from the batch enters into the service area and the rest of them join into the orbit. Arriving positive customers may balk (or renege) the system at particular times. After completion of service the unsatisfied positive customer may rejoin into the orbit to get another regular service as feedback customer. The server takes Bernoulli vacation after service completion of positive customers. After completion of service (if the server is not taking vacation), repair or vacation the server searches for the customers in the orbit or remains idle. The steady state probability generating function for the system size is obtained by using the supplementary variable method. Some system performance measures, reliability measures and stochastic decomposition law are discussed. Finally, some numerical examples and cost optimization analysis are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arivudainambi, D., Godhandaraman, P.: Retrial queueing system with balking, optional service and vacation. Ann. Oper. Res. (2014). doi:10.1007/s10479-014-1765-5

    Google Scholar 

  2. Arivudainambi, D., Godhandaraman, P., Rajadurai, P.: Performance analysis of a single server retrial queue with working vacation. OPSEARCH 51, 434–462 (2014)

    Article  Google Scholar 

  3. Artalejo, J.R., Gomez Corral, A.: Retrial queueing systems: a computational approach. Springer, Berlin-Heidelberg (2008)

    Book  Google Scholar 

  4. Artalejo, J.R.: Accessible bibliography on retrial queues: progress in 2000–2009. Math. Comput. Model. 51, 1071–1081 (2012)

    Article  Google Scholar 

  5. Badamchi Zadeh, A.: A batch arrival multi phase queueing system with random feedback in service and single vacation policy. OPSEARCH (2015). doi:10.1007/s12597-015-0206-9

    Google Scholar 

  6. Chakravarthy, S.R., Krishnamoorthy, A., Joshua, V.C.: Analysis of a multi server retrial queue with search of customers from the orbit. Perform. Eval. 63, 776–798 (2006)

    Article  Google Scholar 

  7. Choudhury, G., Deka, M.: A single server queueing system with two phases of service subject to server breakdown and Bernoulli vacation. Appl. Math. Model. 36, 6050–6060 (2012)

    Article  Google Scholar 

  8. Choudhury, G., Madan, K.C.: A two phase batch arrival queueing system with a vacation time under Bernoulli schedule. Appl. Math. Computat. 149, 337–349 (2004)

    Article  Google Scholar 

  9. Choudhury, G., Tadj, L., Deka, K.: A batch arrival retrial queueing system with two phases of service and service interruption. Comput. Math. Applic. 59, 437–450 (2010)

    Article  Google Scholar 

  10. Choudhury, G., Deka, K.: A batch arrival retrial queue with two phases of service and bernoulli vacation schedule. Acta Math. Appl. Sinica, English Series. 29, 15–34 (2013)

  11. Choudhury, G., Ke, J.C.: An unreliable retrial queue with delaying repair and general retrial times under Bernoulli vacation schedule. Appl. Math. Comput. 230, 436–450 (2014)

    Article  Google Scholar 

  12. Deepak, T.G., Dudin, A.N., Joshua, V.C., Krishnamoorthy, A.: On an M[X]/G/1 retrial system with two types of search of customers from the orbit. Stoch. Anal. Appl. 31, 92–107 (2013)

    Article  Google Scholar 

  13. Falin, G.I., Templeton, J.G.C.: Retrial queues. Chapman & Hall, London (1997)

    Book  Google Scholar 

  14. Fuhrmann, S.W., Cooper, R.B.: Stochastic decompositions in the M/G/1 queue with generalized vacations. Oper. Res. 33, 1117–1129 (1985)

    Article  Google Scholar 

  15. Gao, S., Wang, J.: Performance and reliability analysis of an M/G/1-G retrial queue with orbital search and non-persistent customers. Eur. J. Oper. Res. 236, 561–572 (2014)

    Article  Google Scholar 

  16. Gomez-Corral, A.: Stochastic analysis of a single server retrial queue with general retrial times. Naval Res. Logist. 46, 561–581 (1999)

    Article  Google Scholar 

  17. Jain, M., Upadhyaya, S.: Optimal repairable M[X]/G/1 queue with Bernoulli feedback and setup. Int. J. Math. Oper. Res. 4, 679–702 (2012)

    Article  Google Scholar 

  18. Ke, J.C., Chang, F.M.: An M[x]/(G1, G2)/1 retrial queue under Bernoulli vacation schedules with general repeated attempts and starting failures. Appl. Math. Model. 33, 3186–3196 (2009)

    Article  Google Scholar 

  19. Keilson, J., Servi, L.D.: Oscillating random walk models for GI/G/1 vacation systems with Bernoulli schedules. J. Appl. Probab. 23, 790–802 (1986)

    Article  Google Scholar 

  20. Kulkarni, V.G., Choi, B.D.: Retrial queue with server subject to breakdown and repairs. Queueing Syst. 7, 91–208 (1990)

    Article  Google Scholar 

  21. Krishnakumar, B., Arivudainambi, D.: The M/G/1 retrial queue with Bernoulli schedules and general retrial times. Comput. Math. Appl. 43, 15–30 (2002)

    Article  Google Scholar 

  22. Krishnakumar, B., Pavai Madheswari, S., Anantha Lakshmi, S.R.: An M/G/1 Bernoulli feedback retrial queueing system with negative customers. Oper. Res. Int. J. 13, 187–210 (2013)

    Article  Google Scholar 

  23. Krishnamoorthy, A., Deepak, T.G., Joshua, V.C.: An M/G/1 Retrial queue with non-persistent customers and orbital search. Stoch. Anal. Appl. 23, 975–997 (2005)

    Article  Google Scholar 

  24. Lakshmi, K., Ramanath, K.: An M/G/1 two phase multi-optional retrial queue with Bernoulli feedback, non-persistent customers and breakdown and repair. Int. J. Oper. Res. 19, 78–95 (2014)

    Article  Google Scholar 

  25. Neuts, M.F., Ramalhoto, M.F.: A service model in which the server is required to search for customers. J. Appl. Probab. 21, 157–166 (1984)

    Article  Google Scholar 

  26. Pakes, A.G.: Some conditions for ergodicity and recurrence of Markov chains. Oper. Res. 17, 1058–1061 (1969)

    Article  Google Scholar 

  27. Rajadurai, P., Saravanarajan, M.C., Chandrasekaran, V.M.: Analysis of an M[X]/(G1, G2)/1 retrial queueing system with balking, optional re-service under modified vacation policy and service interruption. Ain Shams Eng. J. 5, 935–950 (2014)

    Article  Google Scholar 

  28. Rajadurai, P., Chandrasekaran, V.M., Saravanarajan, M.C.: Steady state analysis of batch arrival feedback retrial queue with two phases of service, negative customers, Bernoulli vacation and server breakdown. Int. J. Math. Oper. Res. 7, 519–546 (2015)

    Article  Google Scholar 

  29. Rajadurai, P., Varalakshmi, M., Saravanarajan, M.C., Chandrasekaran, V.M.: Analysis of M[X]/G/1 retrial queue with two phase service under Bernoulli vacation schedule and random breakdown. Int. J. Math. Oper. Res. 7, 19–41 (2015)

    Article  Google Scholar 

  30. Rakhee, Geet anjali Sharma, Kriti Priya: Analysis of G–queue with unreliable server. OPSEARCH 50, 334–345 (2013)

    Article  Google Scholar 

  31. Sennott, L.I., Humblet, P.A., Tweedi, R.L.: Mean drifts and the non ergodicity of Markov chains. Oper. Res. 31, 783–789 (1983)

    Article  Google Scholar 

  32. Tadj, L., Chodhury, G.: Optimal design and control of queues. TOP 13, 359–414 (2005)

    Article  Google Scholar 

  33. Takagi, H.: Vacation and priority systems. Part I. Queueing analysis: A foundation of performance evaluation (vol. I). North-Holland, Amsterdam. New York (1991).

  34. Wang, J., Li, J.: A repairable M/G/1 retrial queue with Bernoulli vacation and two-phase service. Qual. Technol. Quant. Manag. 5, 179–192 (2008)

    Google Scholar 

  35. Wu, J., Lian, Z.: A single-server retrial G-queue with priority and unreliable server under Bernoulli vacation schedule. Comput. Ind. Eng. 64, 84–93 (2013)

    Article  Google Scholar 

  36. Yang, S., Wu, J., Liu, Z.: An M[X]/G/1 retrial G-queue with single vacation subject to the server breakdown and repair. Acta Mathematicae Applicatae Sinica, English Series. 29, 579–596 (2013)

  37. Yang, D.Y., Wu, C.H.: Cost-minimization analysis of a working vacation queue with N-policy and server breakdowns. Comput. Ind. Eng. 82, 151–158 (2015)

    Article  Google Scholar 

  38. Zhang, M., Liu, Q.: An M/G/1 G-queue with server breakdown, working vacations and vacation interruption. OPSEARCH 52, 256–270 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rajadurai.

Appendix A

Appendix A

The embedded Markov chain {Z n n ∈ N} is ergodic if and only if ρ < 1 for our system to be stable, where \( \rho =\overline{\theta}\left(1-{R}^{\ast}\left(\lambda \right)\right)\left(r+{X}_{\left[1\right]}-1\right)-p{S}^{*}\left(\delta \right)-\lambda b{X}_{\left[1\right]}\omega \) and ω =  (1) S*(δ) + ((1 − S*(δ))/δ)(1 + δg (1))

  • Proof To prove the sufficient condition of ergodicity, it is very convenient to use Foster’s criterion (see Pakes [26]), which states that the Markov chain {Z n n ∈ N} is an irreducible and aperiodic Markov chain is ergodic if there exists a nonnegative function f(j), j ∈ N and ε > 0,, such that mean drift ψ j  = E[f(Z n + 1) − f(Z n )/Z n  = j] is finite for all jN and ψ j  ≤ − ε for all jN, except perhaps for a finite number j’s. In our case, we consider the function f(j) = j. then we have

$$ {\psi}_j=\left\{\begin{array}{l}p{S}^{*}\left(\delta \right)+\lambda b{X}_{\left[1\right]}\omega -1,\kern13.25em j=0,\\ {}\\ {}\overline{\theta}\left(1-{R}^{\ast}\left(\lambda \right)\right)\left(r+{X}_{\left[1\right]}-1\right)-p{S}^{*}\left(\delta \right)-\lambda b{X}_{\left[1\right]}\omega -1,\kern2.75em j=1,2\dots \end{array}\right. $$

Clearly the inequality \( \overline{\theta}\left(1-{R}^{\ast}\left(\lambda \right)\right)\left(r+{X}_{\left[1\right]}-1\right)+p{S}^{*}\left(\delta \right)+\lambda b{X}_{\left[1\right]}\left(q{\nu}^{(1)}{S}^{*}\left(\delta \right)+\left(\left(1-{S}^{*}\left(\delta \right)\right)/\delta \right)\left(1+\delta {g}^{(1)}\right)\right)<1 \) is a sufficient condition for ergodicity.

To prove the necessary condition, As noted in Sennot et al. [31], if the Markov chain {Z n n ≥ 1} satisfies Kaplan’s condition, namely, ψ j  < ∞ for all j ≥ 0 and there exits j 0 ∈ N such that ψ j  ≥ 0 for j ≥ j 0. Notice that, in our case, Kaplan’s condition is satisfied because there is a k such that m ij  = 0 for j < i − k and i > 0, where M = (m ij ) is the one step transition matrix of {Z n n ∈ N}. Then \( \overline{\theta}\left(1-{R}^{\ast}\left(\lambda \right)\right)\left(r+{X}_{\left[1\right]}-1\right)+p{S}^{*}\left(\delta \right)+\lambda b{X}_{\left[1\right]}\left(q{\nu}^{(1)}{S}^{*}\left(\delta \right)+\left(\left(1-{S}^{*}\left(\delta \right)\right)/\delta \right)\left(1+\delta {g}^{(1)}\right)\right)\ge 1 \) implies the non-ergodicity of the Markov chain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajadurai, P., Chandrasekaran, V.M. & Saravanarajan, M.C. Analysis of an M[X]/G/1 unreliable retrial G-queue with orbital search and feedback under Bernoulli vacation schedule. OPSEARCH 53, 197–223 (2016). https://doi.org/10.1007/s12597-015-0226-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-015-0226-5

Keywords

JEL Classifications

Navigation