Skip to main content
Log in

Decomposition of parametric space for bi-objective optimization problem using neural network approach

  • Application Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

A new gradient-based neural network approach is proposed for solving nonlinear programming problems (NLPPs) and bi-objective optimization problems (BOOPs). The most prominent feature of the proposed approach is that it can converge rapidly to the equilibrium point (optimal solution), for an arbitrary initial point. The proposed approach is affirmed to be stable in the sense of Lyapunov and it is capable for obtaining the optimal solution in solving both NLPPs and BOOPs tasks. Further, BOOP is converted into an equivalent optimization problem by the mean of the weighted sum method, where the Pareto optimal solutions are obtained by using different weights. Also the decomposition of parametric space for BOOP is analyzed in details based on the stability set of the first kind. The experiments results also affirmed that the proposed approach is a promising approach and has an effective performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Coello, C.A.: Evolutionary multi-objective optimization: some current research trends and topics that remain to be explored. Front. Comput. Sci. China 3(1), 18–30 (2009)

    Article  Google Scholar 

  2. Xia, Y.: A recurrent neural network for solving nonlinear convex programs with linear constraints. IEEE Trans. Neural Netw. 16(2), 379–386 (2005)

    Article  Google Scholar 

  3. Leung, Y., Chen, K., Gao, X.: A high-performance feedback neural network for solving convex nonlinear programming problems. IEEE Trans. Neural Netw. 14(6), 1469–1477 (2003)

    Article  Google Scholar 

  4. Xia, Y., Leung, H., Wang, J.: A projection neural network and its application to constrained optimization problems. IEEE Trans. Circuits Syst. 49(4), 447–458 (2002)

    Article  Google Scholar 

  5. Gao, X., Liao, L.Z., Xue, W.: A neural network for a class of convex quadratic minimax problems with constraints. IEEE Trans. Neural Netw. 15(3), 622–628 (2004)

    Article  Google Scholar 

  6. Hopfield, J., Tank, D.: Neural computation of decisions in optimization problem. Biol. Cybern. 52, 141–152 (1985)

    Google Scholar 

  7. Kennedy, M., Chua, L.: Neural network for nonlinear programming. IEEE Trans. Circuits Syst. 35(5), 554–562 (1988)

    Article  Google Scholar 

  8. Rodrigues-Vazquez, A., Dominguez-Castro, R., Rueda, A., Huertas, J.L., Sanchez-Sinencio, E.: Nonlinear switched capacitor neural networks for optimization problems. IEEE Trans. Circuits Syst. 37(3), 384–397 (1990)

    Article  Google Scholar 

  9. Bozerdoum, A., Pattison, T.R.: Neural network for quadratic optimization with bound constraints. IEEE Trans. Neural Netw. 4, 293–304 (1993)

    Article  Google Scholar 

  10. Xia, Y.: A new neural network for solving linear and quadratic programming problems. IEEE Trans. Neural Netw. 7, 1544–1547 (1996)

    Article  Google Scholar 

  11. Tao, Q., Fang, T.J.: The neural network for solving minimax problems with constraints. Control Theory Appl. 17, 82–84 (2000)

    Google Scholar 

  12. Tao, Q., Cao, J.D., Xue, M.S., Qiao, H.: A high performance neural network for solving nonlinear programming problems with hybrid constraints. Phys. Lett. A 288(2), 88–94 (2001)

    Article  Google Scholar 

  13. Cheng, L. Hou, Z.-G., Tan, M., Wang, X.: A simplified recurrent neural network for solving nonlinear variational inequalities. In: Proceedings of International Joint Conference on Neural Networks, pp. 104–109 (2008)

  14. Wang, J.: Recurrent neural network for solving quadratic programming problems with equality constraints. Electron. Lett. 28(14), 1345–1347 (1992)

    Article  Google Scholar 

  15. Wang, J.: Primal and dual neural networks for shortest-path routing. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 28(6), 864–869 (1998)

    Article  Google Scholar 

  16. Lan, K.-M., Wen, U.-P., Shih, H.-S., Lee, E.S.: A hybrid neural network approach to bilevel programming problems. Appl. Math. Lett. 20, 880–884 (2007)

    Article  Google Scholar 

  17. Huang, W., Yan, C., Wang, J., Wang, W.: A time-delay neural network for solving time-dependent shortest path problem. Neural Netw. 90, 21–28 (2017)

    Article  Google Scholar 

  18. Wang, J., Wang, J.: Forecasting stochastic neural network based on financial empirical mode decomposition. Neural Netw. 9, 8–20 (2017)

    Article  Google Scholar 

  19. Arjmandzadeha, Z., Safi, M., Nazemib, A.: A new neural network model for solving random interval linear programming problems. Neural Netw. 89, 11–18 (2017)

    Article  Google Scholar 

  20. Rizk-Allah, R.M., Abo-Sinna, M.A.: Integrating reference point, Kuhn–Tucker conditions and neural network approach for multi-objective and multi-level programming problems. Oper. Res. Soc. India, Accepted 16 Jan 2017. https://doi.org/10.1007/s12597-017-0299-4

  21. Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)

    Google Scholar 

  22. Osman, M.: Qualitative analysis of basic notions in parametric convex programming, (parameters in the objective function). Apl. Mat. 22, 333–348 (1977)

    Google Scholar 

  23. Abo-sinna, M.A., Hussein, M.L.: An algorithm for decomposing the parametric space in multiobjective dynamic programming problems. Eur. J. Oper. Res. 73, 532–538 (1994)

    Article  Google Scholar 

  24. Abo-Sinna, M.A., Hussein, M.L.: An algorithm for generating efficient solutions of multiobjective dynamic programming problems. Eur. J. Oper. Res. 80, 156–165 (1995)

    Article  Google Scholar 

  25. Mangasarian, O.L.: Nonlinear Programming. McGraw-Hill, New York (1969)

    Google Scholar 

  26. Leung, Y., Chen, K., Jiao, Y., Gao, X., KS, K.S.: A new gradient-based neural network for solving linear and quadratic programming problems. IEEE Trans. Neural Netw. 12(5), 1047–1083 (2001)

    Article  Google Scholar 

  27. Xia, J.: The fundational theorems of Liapunov stability. Acta Math. Appl. Sin. 11(2), 249–252 (1988)

    Google Scholar 

  28. LaSalle, J.P.: The Stability of Dynamical Systems. Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1976)

    Book  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers and the editor for their suggestions in improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizk M. Rizk-Allah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abo-Sinna, M.A., Rizk-Allah, R.M. Decomposition of parametric space for bi-objective optimization problem using neural network approach. OPSEARCH 55, 502–531 (2018). https://doi.org/10.1007/s12597-018-0337-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-018-0337-x

Keywords

Navigation