Skip to main content

Advertisement

Log in

Evolutionary algorithms for multi-objective dual-resource constrained flexible job-shop scheduling problem

  • Application Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

This paper presents a multi-objective dual-resource constrained flexible job-shop scheduling problem (MODRCFJSP) with the objectives of minimizing the makespan, critical machine workload and total workload of machines simultaneously. Two types of multi-objective evolutionary algorithms including fast elitist non-dominated sorting genetic algorithm (NSGA-II) and non-dominated ranking genetic algorithm (NRGA) are proposed for solving MODRCFJSP. Some efficient mutation and crossover operators are adapted to the special chromosome structure of the problem for producing new solutions in the algorithm’s generations. Besides, we provide controlled elitism based version of NSGA-II and NRGA, namely controlled elitist NSGA-II (CENSGA-II) and controlled elitist NRGA (CENRGA), to optimize MODRCFJSP. To show the performance of the four proposed algorithms, numerical experiments with randomly generated test problems are used. Moreover, different convergence and diversity performance metrics are employed to illustrate the relative performance of the presented algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Xianzhou, C., Zhenhe, Y.: An improved genetic algorithm for dual-resource constrained flexible job shop scheduling. In: Fourth International Conference on Intelligent Computation Technology and Automation (ICICTA), pp. 42–45 (2011)

  2. Lei, D., Guo, X.: Variable neighbourhood search for dual-resource constrained flexible job shop scheduling. Int. J. Prod. Res. 52(9), 2519–2529 (2013)

    Article  Google Scholar 

  3. Yazdani, M., Zandieh, M., Tavakkoli-Moghaddam, R., Jolai, F.: Two meta-heuristic algorithms for the dual-resource constrained flexible job-shop scheduling problem. Scientia Iranica 22(3), 1242–1257 (2015)

    Google Scholar 

  4. Paksi, A.B.N., Ma’ruf, A.: Flexible Job-Shop Scheduling with Dual-Resource Constraints to Minimize Tardiness Using Genetic Algorithm. IOP Conference Series: Materials Science and Engineering, p. 114. IOP Publishing Ltd, Bristol (2016)

    Google Scholar 

  5. Zheng, X., Wang, L.: A knowledge-guided fruit fly optimization algorithm for dual resource constrained flexible job-shop scheduling problem. Int. J. Prod. Res. 18(1), 1–13 (2016)

    Google Scholar 

  6. Wu, R., Li, Y., Guo, S., Xu, W.: Solving the dual-resource constrained flexible job shop scheduling problem with learning effect by a hybrid genetic algorithm. Adv. Mech. Eng. 10(10), 1–14 (2018)

    Google Scholar 

  7. Liu, X.X., Lio, C.H., Tao, Z.: Research on Bi-objective scheduling of dual-resource constrained flexible job shop. Adv. Mater. Res. 211–212, 1091–1095 (2011)

    Article  Google Scholar 

  8. Lang, M.T.; Li, H.: Research on dual-resource multi-objective flexible job shop scheduling under uncertainty. In: Proceedings of 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce, pp. 1375–1378 (2011)

  9. Gong, G., Deng, Q., Gong, X., Liu, W., Ren, Q.: A new double flexible job-shop scheduling problem integrating processing time, green production, and human factor indicators. J. Clean. Prod. 174(1), 560–576 (2017)

    Google Scholar 

  10. Zhang, J., Jie, J., Wang, W., Xu, X.: A hybrid particle swarm optimization for multi-objective flexible job-shop scheduling problem with dual-resources constrained. Int. J. Comput. Sci. Math. 8(6), 526–532 (2017)

    Article  Google Scholar 

  11. Zhong, Q., Yang, H., Tang, T.: Optimization algorithm simulation for dual-resource constrained job-shop scheduling. Int. J. Simul. Model. 17(1), 147–158 (2018)

    Article  Google Scholar 

  12. Deb, K., Agrawal, S., Pratap, A, Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Proceedings of the Parallel Problem Solving From Nature VI (PPSN-VI) Conference, pp. 849–858 (2000)

  13. Deb, K.: Multi-objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001)

    Google Scholar 

  14. Deb, K.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  15. Al Jadaan, O., Rajamani, L., Rao, C.R.: Non-dominated ranked genetic algorithm for solving multi-objective optimisation problems: NRGA. J. Theor. Appl. Inf. Technol. 2, 60–67 (2008)

    Google Scholar 

  16. Deb, K., Goel, T.: Controlled Elitist Non-dominated Sorting Genetic Algorithms for Better Convergence. Evolutionary Multi-Criterion Optimization. Lecture Notes in Computer Science, pp. 67–81. Springer, Berlin (2001)

    Google Scholar 

  17. Suresh, R.K., Mohanasundaram, K.M.: Pareto archived simulated annealing for job shop scheduling with multiple objectives. Int. J. Adv. Manuf. Technol. 29(1–2), 184–196 (2006)

    Article  Google Scholar 

  18. Tavakkoli-Moghaddam, R., Rahimi-Vahed, A., Mirzaei, A.H.: A hybrid multi-objective immune algorithm for a flow shop scheduling problem with bi-objectives: weighted mean completion time and weighted mean tardiness. Inf. Sci. 177(22), 5072–5090 (2007)

    Article  Google Scholar 

  19. Tavakkoli-Moghaddam, R., Rahimi-Vahed, A.R., Mirzaei, A.H.: Solving a multi-objective no-wait flow shop scheduling problem with an immune algorithm. Int. J. Adv. Manuf. Technol. 36(9), 969–981 (2008)

    Article  Google Scholar 

  20. Wang, X., Gao, L., Zhang, G., Shao, X.: A multi-objective genetic algorithm based on immune and entropy principle for flexible job-shop scheduling problem. Int. J. Adv. Manuf. Technol. 51(5–8), 757–767 (2010)

    Article  Google Scholar 

  21. Liang, Y.C., Lo, M.H.: Multi-objective redundancy allocation optimization using a variable neighborhood search algorithm. J. Heuristics 16(3), 511–535 (2010)

    Article  Google Scholar 

  22. Ekbal, A., Saha, S.: A multiobjective simulated annealing approach for classifier ensemble: named entity recognition in Indian languages as case studies. Expert Syst. Appl. 38(12), 14760–14772 (2011)

    Article  Google Scholar 

  23. Naderi, B., Aminnayeri, M., Piri, M., Ha’iri Yazdi, M.H.: Multi-objective no-wait flowshop scheduling problems: models and algorithms. Int. J. Prod. Res. 50(10), 2592–2608 (2012)

    Article  Google Scholar 

  24. Naderi, B., Mousakhani, M., Khalili, M.: Scheduling multi-objective open shop scheduling using a hybrid immune algorithm. Int. J. Adv. Manuf. Technol. 66(5–8), 895–905 (2013)

    Article  Google Scholar 

  25. Khalili-Damghani, K., Abtahi, A.R., Tavana, M.: A new multi-objective particle swarm optimization method for solving reliability redundancy allocation problems. Reliab. Eng. Syst. Saf. 111, 58–75 (2013)

    Article  Google Scholar 

  26. Rahmati, S.H.A., Zandieh, M., Yazdani, M.: Developing two multi-objective evolutionary algorithms for the multi-objective flexible job shop scheduling problem. Int. J. Adv. Manuf. Technol. 64(5–8), 915–932 (2013)

    Article  Google Scholar 

  27. Tavanaa, M., Abtahi, A.R., Khalili-Damghani, K.: A new multi-objective multi-mode model for solving preemptive time-cost-quality trade-off project scheduling problems. Expert Syst. Appl. 41(4), 1830–1846 (2014)

    Article  Google Scholar 

  28. Cheng, H.C., Chiang, T.C., Fu, L.C.: A two-stage hybrid memetic algorithm for multiobjective job shop scheduling. Expert Syst. Appl. 38(9), 10983–10998 (2011)

    Article  Google Scholar 

  29. Zhou, A., Qu, B.Y., Li, H., Zhaob, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evolut. Comput. 1, 32–49 (2011)

    Article  Google Scholar 

  30. Zhang, C., Li, P., Rao, Y., Li, S.: A new hybrid GA/SA algorithm for the job shop scheduling problem. In: European Conference on Evolutionary Computation in Combinatorial Optimization. Berlin, Heidelberg, pp. 246–259 (2005)

  31. Zhang, C., Rao, Y., Li, P., Shao, X.: Bilevel genetic algorithm for the flexible job-shop scheduling problem. Chin. J. Mech. Eng. 43(4), 119–124 (2007)

    Article  Google Scholar 

  32. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evolut. Comput. 2, 117–132 (2003)

    Article  Google Scholar 

  33. Van Veldhuizen, D.A.: Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. Faculty of the Graduate School of Engineering of the Air Force Institute of Technology, Air University, Dissertation AFIT/DS/ENG/99-01 (1999)

  34. Behnamian, J., Ghomi, S.F., Zandieh, M.: A multi-phase covering Pareto-optimal front method to multi-objective scheduling in a realistic hybrid flowshop using a hybrid metaheuristic. Expert Syst. Appl. 36(8), 11057–11069 (2009)

    Article  Google Scholar 

  35. Karimi, N., Zandieh, M., Karamooz, H.R.: Bi-objective group scheduling in hybrid flexible flowshop: a multi-phase approach. Expert Syst. Appl. 37(6), 4024–4032 (2010)

    Article  Google Scholar 

  36. Arabani, A.B., Zandieh, M., Ghomi, S.F.: Multi-objective genetic-based algorithms for a cross-docking scheduling problem. Appl. Soft Comput. 11(8), 4954–4970 (2011)

    Article  Google Scholar 

  37. Li, J.Q., Pan, Q.K., Tasgetiren, M.F.: A discrete artificial bee colony algorithm for the multi- objective flexible job-shop scheduling problem with maintenance activities. Appl. Math. Model. 38(3), 1111–1132 (2014)

    Article  Google Scholar 

  38. Okabe, T., Jin, Y., Sendhoff, B.: A critical survey of performance indices for multi-objective optimisation. In: Congress on Evolutionary Computation, Canberra (2003)

  39. Schott, J.R.: Fault tolerant design using single and multicriteria genetic algorithms optimization. Master’s thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA (1995)

  40. Tavakkoli-Moghaddama, R., Makui, A., Mazloomic, Z.: A new integrated mathematical model for a bi-objective multi-depot location-routing problem solved by a multi-objective scatter search algorithm. J. Manuf. Syst. 29(2–3), 111–119 (2010)

    Article  Google Scholar 

  41. Tavakkoli-Moghaddam, R., Azarkish, M., Sadeghnejad-Barkousaraie, A.: A new hybrid multi-objective Pareto archive PSO algorithm for a bi-objective job shop scheduling. Expert Syst. Appl. 38(9), 10812–10821 (2011)

    Article  Google Scholar 

  42. Panahi, H., Tavakkoli-Moghaddam, R.: Solving a multi-objective open shop scheduling problem by a novel hybrid ant colony optimization. Expert Syst. Appl. 38(3), 2817–2822 (2011)

    Article  Google Scholar 

  43. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Swiss Federal Institute of Technology (ETH), Zuerich, Switzerland, Dissertation ETH No. 13398 (1999)

  44. Helbig, M., Engelbrecht, A.P.: Performance measures for dynamic multi-objective optimisation algorithms. Inf. Sci. 250(20), 61–81 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zandieh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazdani, M., Zandieh, M. & Tavakkoli-Moghaddam, R. Evolutionary algorithms for multi-objective dual-resource constrained flexible job-shop scheduling problem. OPSEARCH 56, 983–1006 (2019). https://doi.org/10.1007/s12597-019-00395-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-019-00395-y

Keywords

Navigation