Skip to main content
Log in

Corrosion and wear behavior of an Mg–2Zn–0.2Mn alloy in simulated body fluid

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this work, the corrosion behavior of the as-cast and extrusion and aging treatment Mg–2Zn–0.2Mn alloy in simulated body fluid (SBF) were studied. The wear behavior of Mg–2Zn–0.2Mn alloy was investigated using pin-on-disk technique and stainless steel as counterbody under a constant sliding velocity at different loads ranging from 2 to 5 N with deionized water and SBF as lubrication. The results showed that the extrusion and aging treatment Mg–2Zn–0.2Mn alloy exhibited better corrosion resistance compared with the as-cast alloy due to finer average grain size, more homogeneous phase distribution, and decrease in porosity. The friction coefficient of fractional pair under SBF and deionized water lubrication were obviously lower than that of dry sliding condition. However, the wear rate of Mg–2Zn–0.2Mn alloy under SBF lubrication was higher than that of dry sliding and deionized water lubrication due to the corrosiveness of SBF accelerated the wear of the magnesium alloy. The magnesium alloy exhibited different wear mechanisms with the variety of loads and lubrication conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Staiger MP, Pietak AM, Huadamai J, Dias G. Magnesium and it alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27(9):1728.

    Article  Google Scholar 

  2. Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V, Pisch A, Beckmann F, Winhagen H. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006;27(7):1013.

    Article  Google Scholar 

  3. Xu LP, Yu GN, Zhang EL, Yang K. In vivo corrosion behavior of Mg–Mn–Zn alloy for bone implant application. J Biomed Mater Res A. 2007;83A(3):703.

    Article  Google Scholar 

  4. Witte F, Kaese V, Haferkamp H, Switzer E, Lindenberg MA, Wirth CJ, Windhagen H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2005;26(17):3557.

    Article  Google Scholar 

  5. Loos A, Rohde R, Haverich A, Barlach S. In vitro and in vivo biocompatibility testing of absorbable metal stents. Biomater Regen Med. 2007;253(5):103.

    Google Scholar 

  6. Lopez MA, Pereda MD, Valle JA, Lorenzo MF, Garcia-Alonso MC, Ruano OA, Escudero ML. Corrosion behavior of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. Acta Biomater. 2010;6(5):1763.

    Article  Google Scholar 

  7. Zhang SX, Zhang XN, Zhao CL, Li JN, Song Y, Xie CY, Tao HR, Zhang Y, He YH, Jiang Y, Bian YJ. Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater. 2010;6(2):626.

    Article  Google Scholar 

  8. Gao T, Cao SX, Liu YS, Zhang YF, Zhang JC. XPS characterization and corrosion resistance of cerium-treated magnesium coatings. Rare Met. 2011;30(4):359.

    Article  Google Scholar 

  9. Xu LP, Pan F, Yu GN, Yang L, Zhang EL, Yang K. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials. 2009;30(8):1512.

    Article  Google Scholar 

  10. Liu DB, Zuo YB, Meng WY, Chen MF, Fan Z. Fabrication of biodegradable nano-sized β-TCP/Mg composite by a novel melt shearing technology. Mater Sci Eng C. 2012;32(5):1253.

    Article  Google Scholar 

  11. Feng AL, Han Y. The microstructure, mechanical and corrosion properties of calcium polyphosphate reinforced ZK60A magnesium alloy composites. J Alloy Compd. 2010;2(504):585.

    Article  Google Scholar 

  12. Tapiero H, Tew KD. Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother. 2003;9(57):399.

    Article  Google Scholar 

  13. Yin DS, Zhang EL, Zeng SY. Effect of Zn on mechanical property and corrosion property of extruded Mg–Zn–Mn alloy. Trans Nonferr Met Soc China. 2008;18(4):763.

    Article  Google Scholar 

  14. Zhang EL, Yang L. Microstructure, mechanical properties and bio-corrosion properties of Mg–Zn–Mn–Ca alloy for biomedical application. Mater Sci Eng A. 2008;497(1–2):111.

    Google Scholar 

  15. Wang XD, Lin SP, Yang JJ, Tang ZL, Nie ZR. Microstructure and mechanical properties of Al–Mg–Mn alloy with erbium. Rare Met. 2012;31(3):237.

    Article  Google Scholar 

  16. Song GL. Control of biodegradation of biocompatible magnesium alloys. Corros Sci. 2007;4(49):1696.

    Article  Google Scholar 

  17. Zeng RC, Kainer KU, Blawert C. Corrosion of an extruded magnesium alloy ZK60 component—the role of microstructural features. J Alloys Compd. 2011;509(13):4462.

    Article  Google Scholar 

  18. Song G, Atrens A, Dargusch M. Influence of microstructure on the corrosion of diecast AZ91D. Corros Sci. 1999;41(2):249.

    Article  Google Scholar 

  19. Lunder O, Lein JE, Aune T, Nisancioglu K. Role of Mg17Al12 phase in the corrosion of Mg alloy AZ91. Corrosion. 1989;45(9):741.

    Article  Google Scholar 

  20. ASTM-G31-72 (2004). Standard practice for laboratory immersion corrosion testing of metals. Philadelphia: ASTM Standards; 2004.

  21. Huang WJ, Lin Q, Zhang X. Investigation of tribological properties of magnesium alloys under dry sliding and lubrication condition. J Eng Tribol. 2011;225(J1):35.

    Google Scholar 

  22. Anbu SS, Ramanathan S. Dry sliding wear behavior of as-cast ZE41A magnesium alloy. Mater Des. 2010;31(4):1930.

    Article  Google Scholar 

  23. Lopez AJ, Rodrigo P, Torres B, Rams J. Dry sliding wear behaviour of ZE41A magnesium alloy. Wear. 2011;271(11–12):2836.

    Article  Google Scholar 

  24. Song GL, Atrens A. Understanding magnesium corrosion—a framework for improved alloy performance. Adv Eng Mater. 2003;5(12):837.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51271131 and 51071108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Bao Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, DB., Wu, B., Wang, X. et al. Corrosion and wear behavior of an Mg–2Zn–0.2Mn alloy in simulated body fluid. Rare Met. 34, 553–559 (2015). https://doi.org/10.1007/s12598-013-0052-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-013-0052-y

Keywords

Navigation