Skip to main content
Log in

Microstructure and mechanical properties of Cr films deposited with different peak powers by high-power impulse magnetron sputtering

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

For high-power impulse magnetron sputtering (HIPIMS), the peak power applied to the target is of great importance for regulating the ionization degree of the metal target and ion/atom flux ratio. In this work, chromium (Cr) films were deposited on 316-L stainless steel substrates and silicon (100) wafers with different peak powers by HIPIMS. The relationship between peak target power and properties of Cr films was explored in detail. The resulting structure and mechanical properties of deposited Cr films were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), atomic force microscopy (AFM), indentation hardness and scratch tester. The results indicate that the ionization degree of metal target and ion/atom flux ratio increase with the increase in peak power but without the loss of deposition rate at the same time. At low ionization degree, the deposited Cr film has low compressive residual stress and low hardness but good adhesion strength. When the ionization degree of target metal increases with increasing peak power, Cr film exhibits finer size and smoother surface with improved hardness but decreased adhesion strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Seok JW, Jadeed NM, Lin RY. Sputter-deposited nanocrystalline Cr and CrN coatings on steels. Surf Coat Technol. 2001;138(1):14.

    Article  CAS  Google Scholar 

  2. Walter KC, Scheuer JT, McIntyre PC, Kodali P, Yu N, Nastasi M. Increased wear resistance of electrodeposited chromium through applications of plasma source ion implantation techniques. Surf Coat Technol. 1996;85(1–2):1.

    Article  CAS  Google Scholar 

  3. Mazille HMJ. Chemical vapour deposition of chromium onto nickel. Thin Solid Films. 1980;65(1):67.

    Article  CAS  Google Scholar 

  4. Pérez FJ, Pedraza F, Hierro MP, Carpintero MC, Gómez C. Chromising of stainless steels by the use of the CVD-FBR technology. Surf Coat Technol. 2004;184(1):47.

    Article  Google Scholar 

  5. Bolelli G, Cannillo V, Lusvarghi L, Riccò S. Mechanical and tribological properties of electrolytic hard chrome and HVOF-sprayed coatings. Surf Coat Technol. 2006;200(9):2995.

    Article  CAS  Google Scholar 

  6. Vetushka A, Ehiasarian AP. Plasma dynamic in chromium and titanium HIPIMS discharges. J Phys D Appl Phys. 2008;41(1):015.

    Article  Google Scholar 

  7. Theiß S, Bibinov N, Bagcivan N, Ewering M, Awakowicz P, Bobzin K. Time resolved optical emission spectroscopy of an HPPMS coating process. J Phys D Appl Phys. 2010;43(7):075.

    Article  Google Scholar 

  8. Macák K, Kouznetsov V, Schneider J, Helmersson U, Petrov I. Ionized sputter deposition using an extremely high plasma density pulsed magnetron discharge. J Vac Sci Technol A: Vac Surf Films. 2000;18(4):1533.

    Article  Google Scholar 

  9. Hecimovic A, Burcalova KM, Ehiasarian AP. Origins of ion energy distribution function (IEDF) in high power impulse magnetron sputtering (HIPIMS) plasma discharge. J Phys D Appl Phys. 2008;41(9):095.

    Article  Google Scholar 

  10. Vlček J, Kudláček P, Burcalová K, Musil J. Ion flux characteristics in high-power pulsed magnetron sputtering discharges. Europhys Lett (EPL). 2007;77(4):45002.

    Article  Google Scholar 

  11. Lattemann M, Ehiasarian AP, Bohlmark J, Persson PÅO, Helmersson U. Investigation of high power impulse magnetron sputtering pretreated interfaces for adhesion enhancement of hard coatings on steel. Surf Coat Technol. 2006;200(22–23):6495.

    Article  CAS  Google Scholar 

  12. Sarakinos K, Alami J, Konstantinidis S. High power pulsed magnetron sputtering: a review on scientific and engineering state of the art. Surf Coat Technol. 2010;204(11):1661.

    Article  CAS  Google Scholar 

  13. Olaya JJ, Rodil SE, Muhl S, Sánchez E. Comparative study of chromium nitride coatings deposited by unbalanced and balanced magnetron sputtering. Thin Solid Films. 2005;474(1–2):119.

    Article  CAS  Google Scholar 

  14. Olaya JJ, Wei G, Rodil SE, Muhl S, Bhushan B. Influence of the ion–atom flux ratio on the mechanical properties of chromium nitride thin films. Vacuum. 2007;81(5):610.

    Article  CAS  Google Scholar 

  15. Kim K, Park M, Lee W, Kim HW, Lee JG, Lee C. Effects of sputtering power on mechanical properties of Cr films deposited by magnetron sputtering. Mater Sci Technol. 2008;24(7):838.

    Article  CAS  Google Scholar 

  16. Ehiasariana AP, Newa R, Munz WD, Hultmanb L, Helmerssonb U, Kouznetsov V. Influence of high power densities on the composition of pulsed magnetron plasmas. Vacuum. 2002;65(2):147.

    Article  Google Scholar 

  17. Jing FJ, Yin TL, Yukimura K, Sun H, Leng YX, Huang N. Titanium film deposition by high-power impulse magnetron sputtering: influence of pulse duration. Vacuum. 2012;86(12):2114.

    Article  CAS  Google Scholar 

  18. Yukimura K, Mieda R, Tamagaki H, Okimoto T. Electrical characteristics of arc-free high-power pulsed sputtering glow plasma. Surf Coat Technol. 2008;202(22–23):5246.

    Article  CAS  Google Scholar 

  19. Horwat D, Anders A. Spatial distribution of average charge state and deposition rate in high power impulse magnetron sputtering of copper. J Phys D Appl Phys. 2008;41(13):135.

    Article  Google Scholar 

  20. Shefford PB, William DN. Mechanical properties of compositionally modulated Au-Ni thin films: nanoindentation and microcantilever deflection experiments. Mater Res Soc. 1994;9(12):3131.

    Article  Google Scholar 

  21. Sibillano T, Ancona A, Rizzi D, Rodil SS, Nieto JR, Konuk AR, Aarts R, Huis AJ. Study on the correlation between plasma electron temperature and penetration depth in laser welding processes. Phys Procedia. 2010;5(Part B):429.

    Article  CAS  Google Scholar 

  22. Christou C, Barber ZH. Ionization of sputtered material in a planar magnetron discharge. J Vac Sci Technol A: Vac Surf Films. 2000;18(6):2897.

    Article  CAS  Google Scholar 

  23. Christie DJ. Target material pathways model for high power pulsed magnetron sputtering. J Vac Sci Technol A: Vac Surf Films. 2005;23(2):330.

    Article  CAS  Google Scholar 

  24. Christie DJ. Fundamentals of high power pulsed magnetron sputtering: visualization of mechanisms for rate reduction and increased ion fraction. Czech J Phys. 2006;56(2):B93.

    Article  Google Scholar 

  25. Alami J, Gudmundsson JT, Bohlmark J, Birch J, Helmersson U. Plasma dynamics in a highly ionized pulsed magnetron discharge. Plasma Sources Sci Technol. 2005;14(3):525.

    Article  CAS  Google Scholar 

  26. Wu BH, Wang Y, Yu Y, Jiang F, Sun H, Jing FJ, Zhu SF, Wu YP, Leng YX, Huang N. Modulate the deposition rate through changing the combination of frequency and pulse width at constant duty cycle. Surf Coat Technol. 2015;281(3):27.

    Article  CAS  Google Scholar 

  27. Pauleau Y. Generation and evolution of residual stresses in physical vapour-deposited thin films. Vacuum. 2001;61(2):175.

    Article  CAS  Google Scholar 

  28. Windischmann H. Intrinsic stress in sputter-deposited thin films. Crit Rev Solid State Mater Sci. 1992;17(6):547.

    Article  Google Scholar 

  29. Feng YC, Laughlin DE, Lambeth DN. Formation of crystallographic texture in rf sputter-deposited Cr thin films. J Appl Phys. 1994;76(11):7311.

    Article  CAS  Google Scholar 

  30. Ferrec A, Keraudy J, Jacq S, Schuster F, Jouan PY, Djouadi MA. Correlation between mass-spectrometer measurements and thin film characteristics using dcMS and HiPIMS discharges. Surf Coat Technol. 2014;250(18):52.

    Article  CAS  Google Scholar 

  31. Chiang KTK, Wei RH. Growth morphology and corrosion resistance of magnetron sputtered Cr films. Surf Coat Technol. 2011;206(7):1660.

    Article  CAS  Google Scholar 

  32. Lee JW, Tien SK, Kuo YC, Chen CM. The mechanical properties evaluation of the CrN coatings deposited by the pulsed DC reactive magnetron sputtering. Surf Coat Technol. 2006;200(10):3330.

    Article  CAS  Google Scholar 

  33. LaFontaine WR, Yost B, Li CY. Effect of residual stress and adhesion on the hardness of copper films deposited on silicon. Mat Res Soc. 1990;5(4):776.

    Article  CAS  Google Scholar 

  34. Sellers J. Asymmetric bipolar pulsed DC: the enabling technology for reactive PVD. Surf Coat Technol. 1998;98(1):1245.

    Article  CAS  Google Scholar 

  35. Lin JL, Moore JJ, Sproul WD, Mishra B, Wu ZL. Modulated pulse power sputtered chromium coatings. Thin Solid Films. 2009;518(5):1566.

    Article  CAS  Google Scholar 

  36. Janssen GCAM. Stress and strain in polycrystalline thin films. Thin Solid Films. 2007;515(17):6654.

    Article  CAS  Google Scholar 

  37. Moona MW, Jensen HM, Hutchinson JW, Oh KH, Evans AG. The characterization of telephone cord buckling of compressed thin films on substrates. J Mech Phys Solids. 2002;50(11):2355.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Joint Fund of National Natural Science Foundation of China and China Academy of Engineering Physics (No. U1330113), the National Natural Science Foundation of China (No. 31300787) and the Overseas Famous Teacher Program of Chinese Education Ministry (No. MS2010XNJT070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Xiang Leng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wu, BH., Jiang, F. et al. Microstructure and mechanical properties of Cr films deposited with different peak powers by high-power impulse magnetron sputtering. Rare Met. 42, 327–335 (2023). https://doi.org/10.1007/s12598-017-0897-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0897-6

Keywords

Navigation