Skip to main content
Log in

Fracture morphology and crack mechanism in pure polycrystalline magnesium under tension–compression fatigue testing

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The fatigue fracture was characterized and the fracture behavior was analyzed, using scanning electron microscope (SEM) and electron back-scattered diffraction (EBSD), the fatigue tests of two strain amplitude at room temperature were 0.5% and 1.0% respectively, and the results showed that the fatigue deformation of different strain amplitude produced two typical fatigue fracture morphology, and when the strain amplitude was 1.0%, fatigue fracture mechanism of AZ31 magnesium alloy induced by \(\{ 10\bar{1}2\}\) twins, when the strain amplitude is 0.5%, it was induced by \(\{ 10\bar{1}2\} - \{ 10\bar{1}2\}\) double twins. In the present study, the average thickness of primary twin is ~ 20 μm at amplitude of 0.5% and ~ 80 μm at amplitude of 1.0%. The thickness of \(\{ 10\bar{1}2\}\) primary twins was large enough to activate \(\{ 10\bar{1}2\} - \{ 10\bar{1}2\}\) secondary twins at a high strain amplitude, while the thickness of \(\{ 10\bar{1}2\}\) primary twins was too narrow to activate \(\{ 10\bar{1}2\} - \{ 10\bar{1}2\}\) secondary twins at a low strain amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee SY, Choo H, Liaw PK, An K, Hubbard CR. A study on fatigue crack growth behavior subjected to a single tensile. Acta Mater. 2011;59(10):495.

    Article  CAS  Google Scholar 

  2. Uematsu Y, Kakiuchi T, Tamada K, Kamiya Y. EBSD analysis of fatigue crack initiation behavior in coarse-grained AZ31 magnesium alloy. Int J Fatigue. 2016;84:1.

    Article  CAS  Google Scholar 

  3. Yang F, Yin SM, Li SX, Zhang ZF. Crack initiation mechanism of extruded AZ31 magnesium alloy in the very high cycle fatigue regime. Mater Sci Eng, A. 2008;491(1–2):131.

    Article  CAS  Google Scholar 

  4. Yue H, Fu P, Peng L, Li Z, Pan J, Ding W. Damage morphology study of high cycle fatigued as-cast Mg–3.0Nd–0.2Zn–Zr (wt%) alloy. Mater Charact. 2016;111:93.

    Article  CAS  Google Scholar 

  5. Wen B, Wang F, Jin L, Dong J. Fatigue damage development in extruded Mg–3Al–Zn magnesium alloy. Mater Sci Eng, A. 2016;667:171.

    Article  CAS  Google Scholar 

  6. Koike J, Fujiyama N, Ando D, Sutou Y. Roles of deformation twinning and dislocation slip in the fatigue failure mechanism of AZ31 Mg alloys. Scr Mater. 2010;63(7):747.

    Article  CAS  Google Scholar 

  7. Chapuis A, Xin YC, Zhou XJ, Liu Q. \(\{ 10\bar{1}2\}\) Twin variants selection mechanisms during twinning, re-twinning and detwinning. Mater Sci Eng A. 2014;612:431.

  8. Yu Q, Jiang Y, Wang J. Cyclic deformation and fatigue damage in single-crystal magnesium under fully reversed strain-controlled tension-compression in the \([10\bar{1}0]\) direction. Scr Mater. 2015;96(2):41.

  9. Jain J, Zou J, Sinclair CW, Poole WJ. Double tensile twinning in a Mg–8Al–0.5Zn alloy. J Microsc-Oxford. 2011;242(1):26.

    Article  CAS  Google Scholar 

  10. Hou D, Liu T, Luo L, Lu L, Chen H, Shi D. Twinning behaviors of a rolled AZ31 magnesium alloy under multidirectional loading. Mater Charact. 2017;124:122.

    Article  CAS  Google Scholar 

  11. Xin R, Guo C, Jonas JJ, Chen G, Liu Q. Variant selection of \(\{ 10\bar{1}2\} - \{ 10\bar{1}2\}\) double twins during the tensile deformation of an AZ31 Mg alloy. Mater Sci Eng A. 2017;700:226.

  12. Xin YC, Zhou XJ, Lv LC, Liu Q. The influence of a secondary twin on the detwinning deformation of a primary twin in Mg–3Al–1Zn alloy. Mater Sci Eng, A. 2014;606(6):81.

    Article  CAS  Google Scholar 

  13. Jäger A, Ostapovets A, Molnár P, Lejček P. \(\{ 10\bar{1}2\} - \{ 10\bar{1}2\}\) Double twinning in magnesium. Philos Mag Lett. 2011;91(8):537.

  14. Tan L, Zhang X, Sun Q, Yu J, Huang G, Liu Q. \(\{ 10\bar{1}2\} - \{ 10\bar{1}2\}\) double tensile twinning in a Mg–3Al–1Zn alloy sheet during cyclic deformation. Mater Sci Eng A. 2018;711:205.

  15. Ando D, Koike J, Sutou Y. The role of deformation twinning in the fracture behavior and mechanism of basal textured magnesium alloys. Mater Sci Eng, A. 2014;600(2):145.

    Article  CAS  Google Scholar 

  16. Li D, Xue HS, Yang G. Microstructure and mechanical properties of Mg–6Zn–0.5Y magnesium alloy prepared with ultrasonic treatment. Rare Met. 2017;36(8):622.

    Article  CAS  Google Scholar 

  17. Yin SM, Yang F, Yang XM, Wu SD, Li SX, Li GY. The role of twinning–detwinning on fatigue fracture morphology of Mg–3%Al–1%Zn alloy. Mater Sci Eng, A. 2008;494(1–2):397.

    Article  CAS  Google Scholar 

  18. Begum S, Chen DL, Xu S, Luo AA. Low cycle fatigue properties of an extruded AZ31 magnesium alloy. Int J Fatigue. 2009;31(4):726.

    Article  CAS  Google Scholar 

  19. Mughrabi H. Microstructural fatigue mechanisms: cyclic slip irreversibility, crack initiation, non-linear elastic damage analysis. Int J Fatigue. 2013;572(12):2.

    Article  Google Scholar 

  20. Li Q, Yu Q, Zhang J, Jiang Y. Effect of strain amplitude on tension-compression fatigue behavior of extruded Mg6Al1ZnA magnesium alloy. Scr Mater. 2010;62(10):778.

    Article  CAS  Google Scholar 

  21. Wu L, Agnew SR, Brown DW, Stoica GM, Clausen B, Jain A, Fielden DE, Liaw PK. Internal stress relaxation and load redistribution during the twinning–detwinning-dominated cyclic deformation of a wrought magnesium alloy, ZK60A. Acta Mater. 2008;56(14):3699.

    Article  CAS  Google Scholar 

  22. Vinogradov A, Vasilev E, Linderov M, Merson D. In situ observations of the kinetics of twinning–detwinning and dislocation slip in magnesium. Mater Sci Eng, A. 2016;676:351.

    Article  CAS  Google Scholar 

  23. Hama T, Kitamura N, Takuda H. Effect of twinning and detwinning on inelastic behavior during unloading in a magnesium alloy sheet. Mater Sci Eng, A. 2013;583(11):232.

    Article  CAS  Google Scholar 

  24. Wu BL, Duan GS, Du XH, Song LH, Zhang YD, Philippe MJ, Esling C. In situ investigation of extension twinning–detwinning and its effect on the mechanical behavior of AZ31B magnesium alloy. Mater Des. 2017;132:57.

    Article  CAS  Google Scholar 

  25. Yu Q, Zhang JX, Jiang YY. Direct observation of twinning–detwinning–retwinning on magnesium single crystal subjected to strain-controlled cyclic tension–compression in \([0001]\) direction. Philos Mag Lett. 2011;91:757.

  26. Yu Q, Zhang JX, Jiang YY, Li QZ. Effect of strain ratio on cyclic deformation and fatigue of extruded AZ61A magnesium alloy. Int J Fatigue. 2012;44(9):225.

    Article  CAS  Google Scholar 

  27. Tan L, Zhang X, Sun Q, Yu J, Huang G, Liu Q. Pyramidal slips in high cycle fatigue deformation of a rolled Mg–3Al–1Zn magnesium alloy. Mater Sci Eng, A. 2017;699:247.

    Article  CAS  Google Scholar 

  28. Mu SJ, Jonas JJ, Gottstein G. Variant selection of primary, secondary and tertiary twins in a deformed Mg alloy. Acta Mater. 2012;60(5):2043.

    Article  CAS  Google Scholar 

  29. Xin Y, Jiang J, Chapuis A, Wang M, Liu Q. Plastic deformation behavior of AZ31 magnesium alloy under multiple passes cross compression. Mater Sci Eng, A. 2012;532(3):50.

    Article  CAS  Google Scholar 

  30. Barnett MR, Keshavarz Z, Beer AG, Atwell D. Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater. 2004;52(17):5093.

    Article  CAS  Google Scholar 

  31. Wu L, Jain A, Brown DW, Stoica GM, Agnew SR, Clausen B, Fielden DE, Liaw PK. Twinning–detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A. Acta Mater. 2008;56(4):688.

    Article  CAS  Google Scholar 

  32. Dong S, Yu Q, Jiang Y, Dong J, Wang F, Ding W. Electron backscatter diffraction observations of twinning–detwinning evolution in a magnesium alloy subjected to large strain amplitude cyclic loading. Mater Des. 2015;65:762.

    Article  CAS  Google Scholar 

  33. Barnett MR, Keshavarz Z, Beer AG, Ma X. Non-Schmid behaviour during secondary twinning in a polycrystalline magnesium alloy. Acta Mater. 2008;56(1):5.

    Article  CAS  Google Scholar 

  34. Lentz M, Risse M, Schaefer N, Reimers W, Beyerlein IJ. Strength and ductility with \(\{ 10\bar{1}1\} - \{ 10\bar{1}2\}\) double twinning in a magnesium alloy. Nat commun. 2016;7:11068.

  35. Barnett MR. Twinning and the ductility of magnesium alloys Part II. “Contraction” twins. Mater Sci Eng, A. 2007;464(1):8.

    Article  CAS  Google Scholar 

  36. Barnett MR. Twinning and the ductility of magnesium alloys Part I: “Tension” twins. Mater Sci Eng, A. 2007;464(1):1.

    Article  CAS  Google Scholar 

  37. Xu DK, Han EH. Relationship between fatigue crack initiation and activated \(\{ 10\bar{1}2\}\) twins in as-extruded pure magnesium. Scr Mater. 2013;69(9):702.

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51671040, 50890170 and 51421001), the National Basic Research Program of China (No. 2010CB631004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Yan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, L., Zhang, XY., Xia, T. et al. Fracture morphology and crack mechanism in pure polycrystalline magnesium under tension–compression fatigue testing. Rare Met. 39, 162–168 (2020). https://doi.org/10.1007/s12598-018-01200-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-01200-3

Keywords

Navigation