Skip to main content

Advertisement

Log in

Microstructure and mechanical properties of Ti43Al6Nb alloys with different zirconium contents

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Ti43Al6Nb-xZr alloys with different additions of zirconium were prepared by vacuum arc melting furnace. The microstructure and compressive properties at room temperature (RT) were investigated. The microstructure shows dendrites with addition of 0 at%–2.5 at% Zr, and the dendrites are refined with the primary dendrite arms spacing decreasing from 222.64 μm (0 at% Zr) to 92.57 μm (2.0 at% Zr). With Zr addition more than 2.5 at%, the microstructure shows equiaxed grains surrounded by γ phase. Zr is a γ stabilizer and promotes the β/γ transition, resulting in the change of microstructure morphology. Zr reaches the maximum solid solubility (about 6.5 at%) in γ phase with addition of 2.5 at% Zr; moreover, γ phase increases in quantity, bringing about severe micro-segregation. With addition of Zr, the remained β phase turns into ω phase with B82 structure. Ti43Al6Nb-xZr alloys show brittle fracture. The maximum compressive strength is 2161.69 MPa with addition of 2.5 at% Zr and the maximum compressive strain is 30.62% with addition of 0.5 at% Zr, improving by 9.24% and 7.33%, respectively. The improvement of compressive strength results from fine-grain strengthening and solution strengthening. Severe micro-segregation is bad for compressive strength, and large solubility of Zr is detrimental to ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lee WB, Yang HS, Mukherjee AK. Mechanical properties and microstructural characterization of a superplastic TiAl alloy. Mater Sci Eng, A. 1995;192(4):733.

    Article  Google Scholar 

  2. Brotzu A, Felli F, Pilone D. Effect of alloying elements on the behaviour of TiAl-based alloys. Intermetallics. 2014;54(6):176.

    Article  CAS  Google Scholar 

  3. Kim SW, Hong JK, Na YS, Yeom JT, Kim SE. Development of TiAl alloys with excellent mechanical properties and oxidation resistance. Mater Des. 2014;54(2):814.

    Article  CAS  Google Scholar 

  4. Dong CL, Chen H, Jiao ZH. Characterization of creep behavior of TiAl alloy with high Nb content at elevated temperatures. Rare Met. 2016;35(1):106.

    Article  CAS  Google Scholar 

  5. Wu X. Review of alloy and process development of TiAl alloys. Intermetallics. 2006;14(10):1114.

    Article  CAS  Google Scholar 

  6. Clemens H, Bartels A, Bystrzanowski S, Chladil H, Leitner H, Dehm G, Gerling R, Schimansky FP. Grain refinement in γ-TiAl-based alloys by solid state phase transformations. Intermetallics. 2006;14(12):1380.

    Article  CAS  Google Scholar 

  7. Hall EL, Huang SC. Microstructures of rapidly-solidified binary TiAl alloys. Acta Metall Mater. 1990;38(4):539.

    Article  CAS  Google Scholar 

  8. Chen RR, Dong SL, Guo JJ, Ding HS, Su YQ, Fu HZ. Microstructure evolution and mechanical properties of directionally-solidified TiAlNb alloy in different temperature gradients. J Alloy Compd. 2015;648(5):667.

    Article  CAS  Google Scholar 

  9. Liu N, Li Z, Xu WY, Wang Y, Zhang GQ, Yuan H. Hot deformation behavior and microstructural evolution of powder metallurgical TiAl alloy. Rare Met. 2017;36(4):236.

    Article  CAS  Google Scholar 

  10. Bolz S, Oehring M, Lindemann J, Pyczak F, Paul J, Stark A, Lippmann T, Schrüfer S, Roth-Fagaraseanu D, Schreyer A, Weiβ S. Microstructure and mechanical properties of a forged β-solidifying γ TiAl alloy in different heat treatment conditions. Intermetallics. 2015;58:71.

    Article  CAS  Google Scholar 

  11. Gao SB, Xu XJ, Shen ZZ, Ye T, Xu S, Lin JP. Microstructure and properties of forged plasma arc melted pilot ingot of Ti-45Al-8.5Nb-(W, B, Y) alloy. Mater Sci Eng, A. 2016;677(20):89.

    Article  CAS  Google Scholar 

  12. Cui N, Kong FT, Wang XP, Chen YY, Zhou HT. Microstructural evolution, hot workability, and mechanical properties of Ti-43Al-2Cr-2Mn-0.2Y alloy. Mater Des. 2016;89(5):1020.

    Article  CAS  Google Scholar 

  13. Cao SZ, Xiao SL, Chen YY, Tian J, Xu LJ, Wang XP, Han JC, Jia Y. Microstructure evolution of Ti-46Al-6Nb-(Si, B) alloys during heat treatment with W addition. Rare Met. 2016;35(1):85.

    Article  CAS  Google Scholar 

  14. Han JC, Xiao SL, Tian J, Chen YY, Xu LJ, Wang XP, Jia Y, Cao SZ. Microstructure characterization and tensile properties of a Ni-containing TiAl-based alloy with heat treatment. Rare Met. 2016;35(1):26.

    Article  CAS  Google Scholar 

  15. Clemens H, Wallgram W, Kremmer S, Güther V, Otto A, Bartels A. Design of novel β-solidifying TiAl alloys with adjustable β/B2-phase fraction and excellent hot-workability. Adv Eng Mater. 2010;10(8):707.

    Article  Google Scholar 

  16. Song L, Zhang LQ, Xu XJ, Sun J, Lin JP. Omega phase in as-cast high-Nb-containing TiAl alloy. Scripta Mater. 2013;68(12):929.

    Article  CAS  Google Scholar 

  17. Zhang WJ, Appel F. Effect of Al content and Nb addition on the strength and fault energy of TiAl alloys. Mater Sci Eng, A. 2002;329(1):649.

    Article  Google Scholar 

  18. Jabbar H, Monchoux JP, Houdellier F, Dollé M, Schimansky FP, Pyczak F, Thomas M, Couret A. Microstructure and mechanical properties of high niobium containing TiAl alloys elaborated by spark plasma sintering. Intermetallics. 2010;18(12):2312.

    Article  CAS  Google Scholar 

  19. Shi HW, Zhang HY, Wei H, Jin T, Sun XF, Zheng Q. Progress in investigation of Nb-Ti-Al based ultrahigh-temperature alloy. Chinese Journal of Rare Metals. 2016;40(2):172.

    CAS  Google Scholar 

  20. Wang YH, Lin JP, He YH, Wang YL, Chen GL. Microstructural characteristics of Ti-45Al-8.5Nb/TiB2, composites by powder metallurgy. J Alloy Compd. 2009;468(1):505.

    CAS  Google Scholar 

  21. Oehring M, Stark A, Paul JDH, Lippmann T, Pyczak F. Microstructural refinement of boron-containing β-solidifying γ-titanium aluminide alloys through heat treatments in the β phase field. Intermetallics, 2013, 32(Complete):12.

  22. Huang L, Liaw PK, Liu CT, Liu Y, Huang JS. Microstructural evolution of (TiAl) + Nb + W+B alloy. Transactions of Nonferrous Metals Society of China. 2011;21(10):2192.

    Article  CAS  Google Scholar 

  23. Li M, Wang T, Tang W, Bai J, Miao RJ. Formation and transformation of supercooled β phase in Ti-Zr binary alloys. Chinese Journal of Rare Metals. 2016;40(4):301.

    Google Scholar 

  24. Kai-Li LÜ, Yang F, Xie ZY, Liu HS, Cai GM, Jin ZP. Isothermal section of Al-Ti-Zr ternary system at 1073 K. Transactions of Nonferrous Metals Society of China. 2016;26(11):3052.

    Article  Google Scholar 

  25. Yang F, Xiao FH, Liu SG, Dong SS, Huang LH, Chen Q, Cai GM, Liu HS, Jin ZP. Isothermal section of Al-Ti-Zr ternary system at 1273K. J Alloy Compd. 2014;585(5):325.

    Article  CAS  Google Scholar 

  26. Jayaprakash M, Ping DH, Yamabe-Mitarai Y. Effect of Zr and Si addition on high temperature mechanical properties of near-α Ti-Al-Zr-Sn based alloys. Mater Sci Eng, A. 2014;612(26):456.

    Article  CAS  Google Scholar 

  27. Imayev RM, Imayev VM, Oehring M, Appel F. Alloy design concepts for refined gamma titanium aluminide based alloys. Intermetallics. 2007;15(4):451.

    Article  CAS  Google Scholar 

  28. Tetsui T, Shindo K, Kobayashi S, Takeyama M. A newly developed hot worked TiAl alloy for blades and structural components. Scripta Mater. 2002;47(6):399.

    Article  CAS  Google Scholar 

  29. Wang Q, Ding HS, Zhang HL, Liu SQ, Chen RR, Guo JJ, Fu HZ. Microstructure and compressive properties of directionally solidified Er-bearing TiAl alloy using cold crucible. Mater Des. 2016;99(5):10.

    Article  CAS  Google Scholar 

  30. Liu GH, Wang ZD, Fu TL, Li Y, Liu HT, Li TR, Gong MN, Wang GD. Study on the microstructure, phase transition and hardness for the TiAl-Nb alloy design during directional solidification. J Alloy Compd. 2015;650(25):45.

    Article  CAS  Google Scholar 

  31. Dong SL, Chen RR, Guo JJ, Ding HS, Su YQ, Fu HZ. Microstructure control and mechanical properties of Ti44Al6Nb1.0Cr2.0V alloy by cold crucible directional solidification. Mater Sci Eng, A. 2014;614(4):67.

    Article  CAS  Google Scholar 

  32. Kainuma R, Fujita Y, Mitsui H, Ohnuma I, Ishida K. Phase equilibria among α (hcp), β (bcc) and γ (L10) phases in Ti-Al base ternary alloys. Intermetallics. 2000;8(8):855.

    Article  CAS  Google Scholar 

  33. Herzig C, Przeorski T, Friesel M, Hisker F, Divinski S. Tracer solute diffusion of Nb, Zr, Cr, Fe, and Ni in γ-TiAl: effect of preferential site occupation. Intermetallics. 2001;9(6):461.

    Article  CAS  Google Scholar 

  34. Hu D, Jiang H, Wu X. Microstructure and tensile properties of cast Ti-44Al-4Nb-4Hf-0.1Si-0.1B alloy with refined lamellar microstructures. Intermetallics. 2009;17(9):744.

    Article  CAS  Google Scholar 

  35. Huang ZW. Ordered ω phases in a 4Zr-4Nb-containing TiAl-based alloy. Acta Mater. 2008;56(8):1689.

    Article  CAS  Google Scholar 

  36. Banerjee S, Cahn RW. An ordered ω-phase in the rapidly solidified Zr-27 at.% Al alloy. Acta Metall. 1983;31(10):1721.

    Article  CAS  Google Scholar 

  37. Bendersky LA, Boettinger WJ, Burton BP, Biancaniello FS, Shoemaker CB. The formation of ordered ω-related phases in alloys of composition Ti4Al3Nb. Acta Metall Mater. 1990;38(6):931.

    Article  CAS  Google Scholar 

  38. Cheng TT, Loretto MH. The decomposition of the beta phase in Ti-44Al-8Nb and Ti-44Al-4Nb-4Zr-0.2Si alloys. Acta Mater. 1998;46(13):4801.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51274076, 51425402 and 51331005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Run Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, XY., Chen, RR., Yang, Y. et al. Microstructure and mechanical properties of Ti43Al6Nb alloys with different zirconium contents. Rare Met. 42, 2047–2056 (2023). https://doi.org/10.1007/s12598-018-1122-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1122-y

Keywords

Navigation