Skip to main content
Log in

An overview on metal-related catalysts: metal oxides, nanoporous metals and supported metal nanoparticles on metal organic frameworks and zeolites

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Metal nanoparticles (NPs) supported on porous materials have shown great advantages in many catalytic application fields. Supported metal NPs are receiving extensive attention due to their significant contribution in a wide range of current and future applications, and this is arguably one of the fastest growing research fields. In this review, we highlight various types of metal catalysts that possess great potential in several catalytic reactions. The major focus has been on metal oxides, nanoporous metals and metal NPs supported on metal–organic frameworks (MOFs) and zeolites. Special attention has been given to the synthesis strategies and application of the NPs supported on MOFs and zeolites, which are considered highly interesting and rapidly expanding areas in heterogeneous catalysis. Finally, the prospects of these catalysts have been included in the concluding remarks.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Williams C, Carter JH, Dummer NF, Chow YK, Morgan DJ, Yacob S, Serna P, Willock DJ, Meyer RJ, Taylor SH, Hutchings GH. Selective oxidation of methane to methanol using supported AuPd catalysts prepared by stabilizer-free sol-immobilization. ACS Catal. 2018;8(3):2567.

    CAS  Google Scholar 

  2. Hong E, Jeon SA, Lee SS, Shin CH. Methane combustion over Pd/Ni-Al oxide catalysts: effect of Ni/Al ratio in the Ni-Al oxide support. Korean J Chem Eng. 2018;35(9):1815.

    CAS  Google Scholar 

  3. Sharma M, Jung N, Yoo SJ. Toward high-performance Pt-based nanocatalysts for oxygen reduction reaction through organic–inorganic hybrid concepts. Chem Mater. 2018;30(1):2.

    CAS  Google Scholar 

  4. Yang P, Yuan X, Hu H, Liu Y, Zheng H, Yang D, Chen L, Cao M, Xu Y, Min Y, Li Y, Zhang Q. Solvothermal synthesis of alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation. Adv Funct Mater. 2018;28:1704774.

    Google Scholar 

  5. Park JH, Hong E, An SH, Lim DH, Shin CH. Reductive amination of ethanol to ethylamines over Ni/Al2O3 catalysts. Korean J Chem Eng. 2017;34(10):2610.

    CAS  Google Scholar 

  6. Yang P, Xu Y, Chen L, Wang X, Mao B, Xie Z, Wang S-D, Bao F, Zhang Q. Encapsulated silver nanoparticles can be directly converted to silver nanoshell in the gas phase. Nano Lett. 2015;15(12):8397.

    CAS  Google Scholar 

  7. Park JH, Noh H, Chang TS, Shin CH. Low-temperature CO oxidation of Pt/Al0.1Ce0.9Ox catalysts: Effects of supports prepared with different precipitants. Korean J Chem Eng. 2018;35(3):645.

    CAS  Google Scholar 

  8. Jeon KW, Jeong DW, Jang WJ, Shim JO, Na HS, Kim HM, Lee YL, Jeon BH, Seong Kim SH, Bae JW, Roh HS. Preferential CO oxidation over supported Pt catalysts. Korean J Chem Eng. 2016;33(6):1781.

    CAS  Google Scholar 

  9. Chattopadhyay J, Pathak TS, Pak D, Srivastava R. Metal hollow sphere electrocatalysts. Korean J Chem Eng. 2016;33(5):1514.

    CAS  Google Scholar 

  10. Chen YS, Cao YD, Ran R, Wu XD, Weng D. Controlled pore size of Pt/KIT-6 used for propane total oxidation. Rare Met. 2018;37(2):123.

    CAS  Google Scholar 

  11. Yang Q, Hu H, Wang SS. Preparation and desulfurization activity of nano-CeO2/γ-Al2O3 catalysts. Rare Met. 2018;37(7):554.

    Google Scholar 

  12. Ding Y, Chen M. Nanoporous metals for catalytic and optical applications. MRS Bull. 2009;34(8):569.

    CAS  Google Scholar 

  13. Juarez T, Biener J, Weissmüller J, Hodge AM. Nanoporous metals with structural hierarchy: a review. Adv Eng Mater. 2017;19:1700389.

    Google Scholar 

  14. Wada T, Geslin PA, Kato H. Preparation of hierarchical porous metals by two-step liquid metal dealloying. Scr Mater. 2018;142:101.

    CAS  Google Scholar 

  15. Wang Y, Arandiyan H, Scott J, Bagheri A, Dai H, Amal R. Recent advances in ordered meso/microporous metal oxides for heterogeneous catalysis: a review. J Mater Chem A. 2017;5:8825.

    CAS  Google Scholar 

  16. Jo C, Hwang J, Lim WG, Lim J, Hur K, Lee J. Multiscale phase separations for hierarchically ordered macro/mesostructured metal oxides. Adv Mater. 2017. https://doi.org/10.1002/adma.201703829.

    Article  Google Scholar 

  17. Dhakshinamoorthy A, Alvaro M, Garcia H. Commercial metal–organic frameworks as heterogeneous catalysts. Chem Commun. 2012;48:11275.

    CAS  Google Scholar 

  18. Kitagawa S, Kitaura R, Noro S. Functional porous coordination polymers. Angew Chem Int Ed. 2004;43:2334.

    CAS  Google Scholar 

  19. Wang M, Xie MH, Wu CD, Wang YG. From one to three: a serine derivate manipulated homochiral metal-organic framework. Chem Commun. 2009;2396.

  20. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J. Reticular synthesis and the design of new materials. Nature. 2003;423:705.

    CAS  Google Scholar 

  21. Meek ST, Greathouse JA, Allendorf MD. Metal–organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv Mater. 2011;23:249.

    CAS  Google Scholar 

  22. Farha OK, Eryazici I, Jeong NC, Hauser BG, Wilmer CE, Sarjeant AA, Snurr RQ, Nguyen ST, Yazaydin AO, Hupp JT. Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc. 2012;134(36):15016.

    CAS  Google Scholar 

  23. Nagy JB, Bodart P, Hannus I, Kiricsi I. Synthesis, Characterization and Use of Zeolitic Microporous Materials. Szeged: DecaGen Ltd.; 1998. 192.

    Google Scholar 

  24. Jung D, Lee S, Na K. RuO2 supported NaY zeolite catalysts: effect of preparation methods on catalytic performance during aerobic oxidation of benzyl alcohol. Solid State Sci. 2017;72:150.

    CAS  Google Scholar 

  25. Park P, Jung D, Kim HS, Na K, Lee S. Zeolite-based copper catalyst for decarboxylative coupling of alkynyl carboxylic acids with aryl iodides. Catal Commun. 2017;99:83.

    CAS  Google Scholar 

  26. Centi G, Perathoner S. In: Cejka J, Corma A, Zones SI, editors. Zeolites and Catalysis: Synthesis, Reactions and Applications, vol. 2. Weinheim: Wiley-VCH; 2010. 745.

    Google Scholar 

  27. Luo H, Wu XD, Weng D, Liu S, Ran R. A novel insight into enhanced propane combustion performance on PtUSY catalyst. Rare Met. 2017;36(1):1.

    CAS  Google Scholar 

  28. Shelef M, McCabe RW. Twenty-five years after introduction of automotive catalysts: what next. Catal Today. 2000;62:35.

    CAS  Google Scholar 

  29. Ratnasamy C, Wagner JP. Water gas shift catalysis. Catal. Rev. 2009;51(3):325.

    CAS  Google Scholar 

  30. Kim SC, Shim WG. Catalytic combustion of VOCs over a series of manganese oxide catalysts. Appl Catal B Environ. 2010;98(3–4):180.

    CAS  Google Scholar 

  31. Santos VP, Pereira MFR, Órfão JJM, Figueiredo JL. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Appl Catal B Environ. 2010;99(1–2):353.

    CAS  Google Scholar 

  32. Li J, Li L, Cheng W, Wu F, Lu X, Li Z. Controlled synthesis of diverse manganese oxide-based catalysts for complete oxidation of toluene and carbon monoxide. Chem Eng J. 2014;244:59.

    CAS  Google Scholar 

  33. Toberer ES, Schladt TD, Seshadri R. Macroporous manganese oxides with regenerative mesopores. J Am Chem Soc. 2006;128(5):1462.

    CAS  Google Scholar 

  34. Ye Q, Lu H, Zhao J, Cheng S, Kang T, Wang D, Dai H. A comparative investigation on catalytic oxidation of CO, benzene, and toluene over birnessites derived from different routes. Appl Surf Sci. 2014;317:892.

    CAS  Google Scholar 

  35. Alipour Z, Rezaei M, Meshkani F. Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane. J Ind Eng Chem. 2014;20(5):2858.

    CAS  Google Scholar 

  36. Rezaei M, Alavi SM, Sahebdelfar S, Yan Z-F. Effects of K2O Promoter on the activity and stability of nickel catalysts supported on mesoporous nanocrystalline zirconia in CH4 reforming with CO2. Energy Fuel. 2008;22(4):2195.

    CAS  Google Scholar 

  37. Tang W, Yao M, Deng Y, Li X, Han N, Wu X, Chen Y. Decoration of one-dimensional MnO2 with Co3O4 nanoparticles: a heterogeneous interface for remarkably promoting catalytic oxidation activity. Chem Eng J. 2016;306:709.

    CAS  Google Scholar 

  38. Putla S, Amin MH, Reddy BM, Nafady A, Farhan KA, Bhargava SK. MnOx nanoparticle-dispersed CeO2 nanocubes: a remarkable heteronanostructured system with unusual structural characteristics and superior catalytic performance. ACS Appl Mater Interfaces. 2015;7(30):16525.

    CAS  Google Scholar 

  39. Chen H, He J, Zhang C, He H. Self-assembly of novel mesoporous manganese oxide nanostructures and their application in oxidative decomposition of formaldehyde. J Phys Chem C. 2007;111(49):18033.

    CAS  Google Scholar 

  40. Wei Y, Liu J, Zhao Z, Chen Y, Xu C, Duan A, Jiang G, He H. Highly active catalysts of gold nanoparticles supported on three-dimensionally ordered macroporous LaFeO3 for soot oxidation. Angew Chem Int Ed. 2011;50:2326.

    CAS  Google Scholar 

  41. Wei Y, Zhao Z, Jiao J, Liu J, Duan A, Jiang G. Facile synthesis of three-dimensionally ordered macroporous LaFeO3-supported gold nanoparticle catalysts with high catalytic activity and stability for soot combustion. Catal Today. 2015;245:37.

    CAS  Google Scholar 

  42. Liu Y, Dai H, Deng J, Li X, Wang Y, Arandiyan H, Xie S, Yang H, Guo G. Au/3DOM La0.6Sr0.4MnO3: highly active nanocatalysts for the oxidation of carbon monoxide and toluene. J Catal. 2013;305:146.

    CAS  Google Scholar 

  43. Ding Y, Erlebacher J. Nanoporous metals with controlled multimodal pore size distribution. J Am Chem Soc. 2003;125(26):7772.

    CAS  Google Scholar 

  44. Nyce GW, Hayes JR, Hamza AV, Satcher JH. Synthesis and characterization of hierarchical porous gold materials. Chem Mater. 2007;19(3):344.

    CAS  Google Scholar 

  45. Liu Z, Searson PC. Single nanoporous gold nanowire sensors. J Phys Chem B. 2006;110(9):4318.

    CAS  Google Scholar 

  46. Ji C, Searson PC. Fabrication of nanoporous gold nanowires. Appl Phys Lett. 2002;81(23):4437.

    CAS  Google Scholar 

  47. Liu LF, Pippel E, Scholz R, Gösele U. Nanoporous Pt–Co alloy nanowires: fabrication, characterization, and electrocatalytic properties. Nano Lett. 2009;9(12):4352.

    CAS  Google Scholar 

  48. Tominaka S. Facile synthesis of nanostructured gold for microsystems by the combination of electrodeposition and dealloying. J Mater Chem. 2011;21:9725.

    CAS  Google Scholar 

  49. Chae WS, Gough DV, Ham SK, Robinson DB, Braun PV. Effect of ordered intermediate porosity on ion transport in hierarchically nanoporous electrodes. ACS Appl Mater Interfaces. 2012;4(8):3973.

    CAS  Google Scholar 

  50. Shi S, Markmann J, Weissmüller J. Actuation by hydrogen electrosorption in hierarchical nanoporous palladium. Philos Mag. 2017;97(19):1571.

    CAS  Google Scholar 

  51. Hakamada M, Mabuchi M. Fabrication, microstructure, and properties of nanoporous Pd, Ni, and their alloys by dealloying. Crit Rev Solid State Mater Sci. 2013;38(4):262.

    CAS  Google Scholar 

  52. Zhang Z, Wang Y, Qi Z, Zhang W, Qin J, Frenzel J. Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying. J Phys Chem C. 2009;113(29):12629.

    CAS  Google Scholar 

  53. Xu Y, Chen L, Wang X, Yao W, Zhang Q. Recent advances in noble metal based composite nanocatalysts: colloidal synthesis, properties, and catalytic applications. Nanoscale. 2015;7:10559.

    CAS  Google Scholar 

  54. Jin HJ, Wang XL, Parida S, Wang K, Seo M, Weissmüller J. Nanoporous Au–Pt alloys as large strain electrochemical actuators. Nano Lett. 2010;10(1):187.

    CAS  Google Scholar 

  55. Snyder J, Asanithi P, Dalton AB, Erlebacher J. Stabilized nanoporous metals by dealloying ternary alloy precursors. Adv Mater. 2008;20:4883.

    CAS  Google Scholar 

  56. Yu J, Ding Y, Xu C, Inoue A, Sakurai T, Chen M. Nanoporous metals by dealloying multicomponent metallic glasses. Chem Mater. 2008;20(14):4548.

    CAS  Google Scholar 

  57. Cox ME, Dunand DC. Bulk gold with hierarchical macro-, micro- and nano-porosity. Mater Sci Eng A. 2011;528(6):2401.

    Google Scholar 

  58. Raney M. Method of producing finely-divided nickel. U.S. Patent. 1927;1628:190.

  59. Smith AJ, Trimm DL. The preparation of skeletal catalysts. Annu Rev Mater Res. 2005;35:127.

    CAS  Google Scholar 

  60. Kucernak A, Jiang JH. Mesoporous platinum as a catalyst for oxygen electroreduction and methanol electrooxidation. Chem Eng J. 2003;93(1):81.

    CAS  Google Scholar 

  61. Kong Q, Lian L, Liu Y, Zhang J, Wang L, Feng W. Bulk hierarchical nanoporous palladium prepared by dealloying PdAl alloys and its electrochemical properties. Microporous Mesoporous Mater. 2015;208:152.

    CAS  Google Scholar 

  62. Xu J, Zhang C, Wang X, Ji H, Zhao C, Wang Y, Zhang Z. Fabrication of bi-modal nanoporous bimetallic Pt–Au alloy with excellent electrocatalytic performance towards formic acid oxidation. Green Chem. 2011;13:1914.

    CAS  Google Scholar 

  63. Xu C, Su J, Xu X, Liu P, Zhao H, Tian F, Ding Y. Low temperature CO oxidation over unsupported nanoporous Gold. J Am Chem Soc. 2007;129(1):42.

    CAS  Google Scholar 

  64. Biener J, Biener MM, Madix RJ, Friend CM. Nanoporous Gold: understanding the origin of the reactivity of a 21st Century catalyst made by pre-Columbian technology. ACS Catal. 2015;5(11):6263.

    CAS  Google Scholar 

  65. Wittstock A, Zielasek V, Biener J, Friend CM, Bäumer M. Nanoporous Gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science. 2010;327(5963):319.

    CAS  Google Scholar 

  66. Zhang Z, Ma H, Zhang D, Liu P, Tian F, Ding Y. Electrocatalytic activity of bimetallic platinum–gold catalysts fabricated based on nanoporous gold. Phys Chem Chem Phys. 2008;10:3250.

    CAS  Google Scholar 

  67. Xiao S, Xiao F, Hu Y, Yuan S, Wang S, Qian L, Liu Y. Hierarchical nanoporous gold-platinum with heterogeneous interfaces for methanol electrooxidation. Sci Rep. 2014;4:4370.

    Google Scholar 

  68. Guo X, Han J, Liu P, Chen L, Ito Y, Jian Z, Jin T, Hirata A, Li F, Fujita T, Asao N, Zhou H, Chen M. Hierarchical nanoporosity enhanced reversible capacity of bicontinuous nanoporous metal based Li-O2 battery. Sci Rep. 2016;6:33466.

    CAS  Google Scholar 

  69. Zhang S, Xing Y, Jiang T, Du Z, Li F, He L, Liu W. A three-dimensional tin-coated nanoporous copper for lithium-ion battery anodes. J Power Sources. 2011;196(16):6915.

    CAS  Google Scholar 

  70. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB. LixCoO2 (0 < x < 1): a new cathode material for batteries of high energy density. Mater Res Bull. 1980;15(6):783.

    CAS  Google Scholar 

  71. Yu Y, Gu L, Lang XY, Zhu CB, Fujita T, Chen MW. Li storage in 3D nanoporous Au-supported nanocrystalline Tin. J Maier Adv Mater. 2011;23:2443.

    CAS  Google Scholar 

  72. Liu D, Yang Z, Wang P, Li F, Wang D, He D. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes. Nanoscale. 2013;5:1917.

    CAS  Google Scholar 

  73. Moon HR, Lim DW, Suh MP. Fabrication of metal nanoparticles in metal–organic frameworks. Chem Soc Rev. 2013;42:1807.

    CAS  Google Scholar 

  74. Jiang HL, Liu B, Akita T, Haruta M, Sakurai H, Xu Q. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal–organic framework. J Am Chem Soc. 2009;131(32):11302.

    CAS  Google Scholar 

  75. Ishida T, Kawakita N, Akita T, Haruta M. One-pot N-alkylation of primary amines to secondary amines by gold clusters supported on porous coordination polymers. Gold Bull. 2009;42(4):267.

    CAS  Google Scholar 

  76. Meilikhov M, Yusenko K, Esken D, Turner S, Tendeloo GV, Fischer RA. Metals@MOFs—loading MOFs with metal nanoparticles for hybrid functions. Eur J Inorg Chem. 2010;3701.

  77. Hermes S, Schröter M-K, Schmid R, Khodeir L, Muhler M, Tissler A, Fischer RW, Fischer RA. Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angew Chem Int Ed. 2005;44:6237.

    CAS  Google Scholar 

  78. Park YK, Choi SB, Nam HJ, Jung DY, Ahn HC, Choi K, Furukawa H, Kim J. Catalytic nickel nanoparticles embedded in a mesoporous metal–organic framework. Chem Commun. 2010;46:3086.

    CAS  Google Scholar 

  79. Schroder F, Henke S, Zhang XN, Fischer RA. Simultaneous gas-phase loading of MOF-5 with two metal precursors: towards bimetallics@MOF. Eur. J. Inorg. Chem. 2009;3131.

  80. Leus K, Dendooven J, Tahir N, Ramachandran RK, Meledina M, Turner S, Van Tendeloo G, Goeman JL, Van der Eycken J, Detavernier C, Van Der Voort P. Atomic layer deposition of Pt nanoparticles within the cages of MIL-101: a mild and recyclable hydrogenation catalyst. Nanomaterials. 2016;6(3):45.

    Google Scholar 

  81. Miikkulainen V, Leskela M, Ritala M, Puurunen RL. Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends. J Appl Phys. 2013;113:021301.

    Google Scholar 

  82. Pan H, Li X, Yu Y, Li J, Hu J, Guan Y, Wu P. Pt nanoparticles entrapped in mesoporous metal–organic frameworks MIL-101 as an efficient catalyst for liquid-phase hydrogenation of benzaldehydes and nitrobenzenes. J Mol Catal A Chem. 2015;399:1.

    CAS  Google Scholar 

  83. Henschel A, Gedrich K, Kraehnert R, Kaskel S. Catalytic properties of MIL-101. Chem Commun 2008;4192.

  84. Na K, Choi KM, Yaghi OM, Somorjai GA. Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts. Nano Lett. 2014;14(10):5979.

    Google Scholar 

  85. Liu H, Li Y, Luque R, Jiang H. A Tuneable bifunctional water-compatible heterogeneous catalyst for the selective squeous hydrogenation of phenols. Adv Synth Catal. 2011;353:3107.

    CAS  Google Scholar 

  86. Akbayrak S, Tonbul Y, Özkar S. Ceria supported rhodium nanoparticles: superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane. Appl Catal B Environ. 2016;198:162.

    CAS  Google Scholar 

  87. Tilgner D, Friedrich M, Hermannsdofer J, Kempe R. Titanium dioxide reinforced metal–organic framework Pd catalysts: activity and reusability enhancement in alcohol dehydrogenation reactions and improved photocatalytic performance. ChemCatChem. 2015;7:3916.

    CAS  Google Scholar 

  88. Cheng J, Gu X, Liu P, Wang T, Su H. Controlling catalytic dehydrogenation of formic acid over low-cost transition metal-substituted AuPd nanoparticles immobilized by functionalized metal–organic frameworks at room temperature. J Mater Chem A. 2016;4:16645.

    CAS  Google Scholar 

  89. Aijaz A, Karkamka A, Choi YJ, Tsumori N, Ronnebro E, Autrey T, Shioyama H, Xu Q. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal–organic framework: a double solvents approach. J Am Chem Soc. 2012;134(34):13926.

    CAS  Google Scholar 

  90. Yang KZ, Zhou LQ, Xiong X, Ye ML, Li L, Xia QH. RuCuCo nanoparticles supported on MIL-101 as a novel highly efficient catalysts for the hydrolysis of ammonia borane. Microporous Mesoporous Mater. 2016;225:1.

    CAS  Google Scholar 

  91. Wen L, Du XQ, Su J, Luo W, Cai P, Cheng GZ. Ni–Pt nanoparticles growing on metal organic frameworks (MIL-96) with enhanced catalytic activity for hydrogen generation from hydrazine at room temperature. Dalton Trans. 2015;44:6212.

    CAS  Google Scholar 

  92. Islam SM, Mondal P, Roy AS, Mondal S, Hossain D. Heterogeneous Suzuki and copper-free Sonogashira cross-coupling reactions catalyzed by a reusable palladium(II) complex in water medium. Tetrahedron Lett. 2010;51(15):2067.

    CAS  Google Scholar 

  93. Evangelisti C, Panziera N, D’Alessio A, Bertinetti L, Botavina M, Vitulli G. New monodispersed palladium nanoparticles stabilized by poly-(N-vinyl-2-pyrrolidone): preparation, structural study and catalytic properties. J Catal. 2010;272(2):246.

    CAS  Google Scholar 

  94. Yuan BZ, Pan YY, Li YW, Yin BL, Jiang HF. A highly active heterogeneous palladium catalyst for the Suzuki-Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous media. Angew Chem Int Ed. 2010;49:4054.

    CAS  Google Scholar 

  95. Han FS. Transition-metal-catalyzed Suzuki-Miyaura cross-coupling reactions: a remarkable advance from palladium to nickel catalysts. Chem Soc Rev. 2013;42:5270.

    CAS  Google Scholar 

  96. Yuan E, Zhang K, Lu G, Mo Z, Tang Z. Synthesis and application of metal-containing ZSM-5 for the selective catalytic reduction of NOx with NH3. J Ind Eng Chem. 2016;42:142.

    CAS  Google Scholar 

  97. Cürdaneli PE, Özkar S. Ruthenium(III) ion-exchanged zeolite Y as highly active and reusable catalyst in decomposition of nitrous oxide to sole nitrogen and oxygen. Microporous Mesoporous Mater. 2014;196:51.

    Google Scholar 

  98. Zhang J, Tu R, Goto T. Precipitation of Ni nanoparticle on Al2O3 powders by novel rotary chemical vapor deposition. J Ceram Soc Jpn. 2013;121(2):226.

    CAS  Google Scholar 

  99. Li P, Liu G, Wu H, Liu Y, Jiang JG, Wu P. Postsynthesis and selective oxidation properties of nanosized Sn-Beta zeolite. J Phys Chem C. 2011;115(9):3663.

    CAS  Google Scholar 

  100. Rane N, Kersbulck M, van Santen RA, Hensen EJM. Cracking of n-heptane over Brønsted acid sites and Lewis acid Ga sites in ZSM-5 zeolite. Microporous Mesoporous Mater. 2008;110(2–3):279.

    CAS  Google Scholar 

  101. Blasco T, Camblor MA, Corma A, Esteve P, Guil JM, Martínez A, Perdigón-Melón JA, Valencia S. Direct synthesis and characterization of hydrophobic aluminumfFree Ti–Beta zeolite. J. Phys. Chem. B. 1998;102(1):75.

    CAS  Google Scholar 

  102. Hammond C, Conrad S, Hermans I. Simple and scalable preparation of highly active Lewis acidic Sn-β. Angew Chem Int Ed. 2012;51:11736.

    CAS  Google Scholar 

  103. Liu L, Díaz U, Arenal R, Agostini G, Concepción P, Corma A. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat Mater. 2017;16:132.

    CAS  Google Scholar 

  104. Li S, Boucheron T, Tuel A, Farrusseng D, Meunier F. Size-selective hydrogenation at the subnanometer scale over platinum nanoparticles encapsulated in silicalite-1 single crystal hollow shells. Chem Commun. 2014;50:1824.

    CAS  Google Scholar 

  105. Li S, Burel L, Aquino C, Tuel A, Morfin F, Rousset JL, Farrusseng D. Ultimate size control of encapsulated gold nanoparticles. Chem Commun. 2013;49:8507.

    CAS  Google Scholar 

  106. Holm MS, Saravanamurugan S, Taarning E. Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. Science. 2010;328(5978):602.

    CAS  Google Scholar 

  107. Dijkmans J, Dusselier M, Gabriels D, Houthoofd K, Magusin PCMM, Huang S, Pontikes Y, Trekels M, Vantomme A, Giebeler L, Oswald S, Sels BF. Cooperative catalysis for multistep biomass conversion with Sn/Al beta zeolite. ACS Catal. 2015;5(2):928.

    CAS  Google Scholar 

  108. Mielby J, Abildstrøm JO, Wang F, Kasama T, Weidenthaler C, Kegnaes S. Oxidation of bioethanol using zeolite encapsulated gold nanoparticles. Angew Chem Int Ed. 2014;53:12513.

    CAS  Google Scholar 

  109. Na K, Alayoglu S, Ye R, Somorjai GA. Effect of acidic properties of mesoporous zeolites supporting pt nanoparticles on hydrogenative conversion of methylcyclopentane. J Am Chem Soc. 2014;136(49):17207.

    CAS  Google Scholar 

  110. Sun Q, Wang N, Bing Q, Si R, Liu J, Bai R, Zhang P, Jia M, Yu J. Subnanometric hybrid Pd-M(OH)2, M = Ni Co, clusters in zeolites as highly efficient nanocatalysts for hydrogen generation. Chem. 2017;3(3):477.

    CAS  Google Scholar 

  111. Tomkins P, Ranocchiari M, van Bokhoven JA. Direct conversion of methane to methanol under mild conditions over Cu-zeolites and beyond. Acc Chem Res. 2017;50(2):418.

    CAS  Google Scholar 

  112. Wang N, Sun Q, Bai R, Li X, Guo G, Yu J. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J Am Chem Soc. 2016;138(24):7484.

    CAS  Google Scholar 

  113. Sushkevich VL, Palagin D, Ranocchiari M, van Bokhoven JA. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science. 2017;356(6337):523.

    CAS  Google Scholar 

  114. Kaur B, Srivastava R, Satpati B. Highly efficient CeO2 decorated nano-ZSM-5 catalyst for electrochemical oxidation of methanol. ACS Catal. 2016;6(4):2654.

    CAS  Google Scholar 

  115. Hudson MR, Queen WL, Mason JA, Fickel DW, Lobo RF, Brown CM. Unconventional, highly selective CO2 adsorption in zeolite SSZ-13. J Am Chem Soc. 2012;134(4):1970.

    CAS  Google Scholar 

  116. Guo P, Shin J, Greenaway AG, Min JG, Su J, Choi HJ, Liu L, Cox PA, Hong SB, Wright PA, Zou X. A zeolite family with expanding structural complexity and embedded isoreticular structures. Nature. 2015;524:74.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (Nos. NRF-2015R1A4A1041036 and NRF-2018R1C1B6006076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyungsu Na.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B.K., Lee, S. & Na, K. An overview on metal-related catalysts: metal oxides, nanoporous metals and supported metal nanoparticles on metal organic frameworks and zeolites. Rare Met. 39, 751–766 (2020). https://doi.org/10.1007/s12598-019-01205-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01205-6

Keywords

Navigation