Skip to main content
Log in

Recent progress in ceramic matrix composites reinforced with graphene nanoplatelets

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Graphene nanoplatelets (GNPs) are considered to be one of the most promising new reinforcements due to their unique two-dimensional structure and remarkable mechanical properties. In addition, their impressive electrical and thermal properties make them attractive fillers for producing multifunctional ceramics with a wide range of applications. This paper reviews the current status of the research and development of graphene-reinforced ceramic matrix composite (CMC) materials. Firstly, we focused on the processing methods for effective dispersion of GNPs throughout ceramic matrices and the reduction of the porosity of CMC products. Then, the microstructure and mechanical properties are provided, together with an emphasis on the possible toughening mechanisms that may operate. Additionally, the unique functional properties endowed by GNPs, such as enhanced electrical/thermal conductivity, are discussed, with a comprehensive comparison in different ceramic matrices as oxide and non-oxide composites. Finally, the prospects and problems needed to be solved in GNPs-reinforced CMCs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Centeno A, Rocha VG, Alonso B, Fernandez A, Gutierrez-Gonzalez CF, Torrecillas R, Zurutuza A. Graphene for tough and electroconductive alumina ceramics. J Eur Ceram Soc. 2013;33(15–16):3201.

    Article  CAS  Google Scholar 

  2. Yazdani B, Xia YD, Ahmad I, Zhu YQ. Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites. J Eur Ceram Soc. 2015;35(1):179.

    Article  CAS  Google Scholar 

  3. Markandan K, Tan MTT, Chin J, Lim SS. A novel synthesis route and mechanical properties of Si–O–C cured Yytria stabilised zirconia (YSZ)-graphene composite. Ceram Int. 2015;41(3):3518.

    Article  CAS  Google Scholar 

  4. Sternitzke M. Structural ceramic nanocomposites. J Eur Ceram Soc. 1997;17(9):1061.

    Article  CAS  Google Scholar 

  5. Niihara K. New design concept of structural ceramics-ceramic nanocomposites. J Ceram Soc Jpn. 1991;99(10):974.

    Article  CAS  Google Scholar 

  6. Cho J, Boccaccini AR, Shaffer MSP. Ceramic matrix composites containing carbon nanotubes. J Mater Sci. 2009;44(8):1934.

    Article  CAS  Google Scholar 

  7. He B, Li Y, Zhang HY, Wu DL, Liang LH, Wei H. Phase transformation of ZrO2 doped with CeO2. Rare Met. 2018;37(1):66.

    Article  CAS  Google Scholar 

  8. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666.

    Article  CAS  Google Scholar 

  9. Weitz RT, Yacoby A. Nanomaterials: graphene rests easy. Nat Nanotechnol. 2010;5(10):699.

    Article  CAS  Google Scholar 

  10. Lee C, Wei XD, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer grapheme. Science. 2008;321(5887):385.

    Article  CAS  Google Scholar 

  11. Geim AK. Graphene: status and prospects. Science. 2009;324(5934):1530.

    Article  CAS  Google Scholar 

  12. Van BJ. Graphene: from strength to strength. Nat Nanotechnol. 2007;2(4):199.

    Article  CAS  Google Scholar 

  13. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK. Fine structure constant defines visual transparency of graphene. Science. 2008;320(5881):1308.

    Article  CAS  Google Scholar 

  14. Huang X, Yin ZY, Wu SX, Qi XY, He QY, Zhang QC, Yan QY, Boey F, Zhang H. Graphene-based materials: synthesis, characterization, properties, and applications. Small. 2011;7(14):1876.

    Article  CAS  Google Scholar 

  15. Edwards RS, Coleman KS. Graphene synthesis: relationship to applications. Nanoscale. 2013;5(1):38.

    Article  CAS  Google Scholar 

  16. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S. Graphene based materials: past, present and future. Prog Mater Sci. 2011;56(8):1178.

    Article  CAS  Google Scholar 

  17. Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8(3):902.

    Article  CAS  Google Scholar 

  18. Estili M, Sakka Y. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites. Sci Technol Adv Mat. 2014;15(6):064902.

    Article  Google Scholar 

  19. Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene. Carbon. 2010;48(8):2127.

    Article  CAS  Google Scholar 

  20. Tkalya EE, Ghislandi M, With GD, Koning CE. The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites. Curr Opin Colloid Interface Sci. 2012;17(4):225.

    Article  CAS  Google Scholar 

  21. Galusek D, Galuskova D. Alumina matrix composites with non-oxide nanoparticle addition and enhanced functionalities. Nanomaterials. 2015;5(1):115.

    Article  CAS  Google Scholar 

  22. Aparna R, Sivakumar N, Balakrishnan A, Nair AS, Nair SV, Subramanian KRV. An effective route to produce few-layer graphene using combinatorial ball milling and strong aqueous exfoliants. J Renew Sustain Energy. 2013;5(3):033123.

    Article  CAS  Google Scholar 

  23. Li DX, Yang ZH, Jia DC, Duan XM, He PG, Yu J, Zhou Y. Spark plasma sintering and toughening of graphene platelets reinforced SiBCN nanocomposites. Ceram Int. 2015;41(9):10755.

    Article  CAS  Google Scholar 

  24. Kim W, Oh HS, Shon IJ. The effect of graphene reinforcement on the mechanical properties of Al2O3 ceramics rapidly sintered by high-frequency induction heating. Int J Refract Met Hard Mater. 2015;48:376.

    Article  CAS  Google Scholar 

  25. He T, Li JL, Wang LJ, Zhu JJ, Jiang W. Preparation and consolidation of alumina/graphene composite powders. Mater Trans. 2009;50(4):749.

    Article  CAS  Google Scholar 

  26. Fan YC, Wang LJ, Li JL, Li JQ, Sun SK, Chen F, Chen LD, Jiang W. Preparation and electrical properties of graphene nanosheet/Al2O3 composites. Carbon. 2010;48(6):1743.

    Article  CAS  Google Scholar 

  27. Liu X, Fan YC, Li JL, Wang LJ, Jiang W. Preparation and mechanical properties of graphene nanosheet reinforced alumina composites. Adv Eng Mater. 2015;17(1):28.

    Article  CAS  Google Scholar 

  28. Kun P, Tapaszto O, Weber F, Balazsi C. Determination of structural and mechanical properties of multilayer graphene added silicon nitride-based composites. Ceram Int. 2012;38(1):211.

    Article  CAS  Google Scholar 

  29. An XH, Simmons TJ, Shah R, Wolfe C, Lewis KM, Washington M, Nayak SK, Talapatra S, Kar S. Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano Lett. 2010;10(11):4295.

    Article  CAS  Google Scholar 

  30. Chintapalli RK, Marro FG, Milsom B, Reece M, Anglada M. Processing and characterization of high-density zirconia–carbon nanotube composites. Mater Sci Eng, A. 2012;549:50.

    Article  CAS  Google Scholar 

  31. Low FW, Lai CW, Abd Hamid SB. Easy preparation of ultrathin reduced graphene oxide sheets at a high stirring speed. Ceram Int. 2015;41(4):5798.

    Article  CAS  Google Scholar 

  32. López-Pernía C, Muñoz-Ferreiro C, González-Orellana C, Morales-Rodríguez A, Gallardo-López Á, Poyato R. Optimizing the homogenization technique for graphene nanoplatelet/yttria tetragonal zirconia composites: influence on the microstructure and the electrical conductivity. J Alloys Compd. 2018;767(30):994.

    Article  CAS  Google Scholar 

  33. Wang L, Bi JQ, Wang WL, Hao XX, Gao XC, Yan WK. The effect of dispersion method on the mechanical properties of graphene reinforced alumina composites. Solid State Phenom. 2018;281:93.

    Article  Google Scholar 

  34. Nieto A, Huang L, Han YH, Schoenung JM. Sintering behavior of spark plasma sintered alumina with graphene nanoplatelet reinforcement. Ceram Int. 2015;41(4):5926.

    Article  CAS  Google Scholar 

  35. Porwal H, Tatarko P, Grasso S, Khaliq J, Dlouhy I, Reece MJ. Graphene reinforced alumina nano-composites. Carbon. 2013;64:359.

    Article  CAS  Google Scholar 

  36. Rincon A, Moreno R, Chinelatto ASA, Gutierrez-Gonzalez CF, Rayon E, Salvador MD, Borrell A. Al2O3-3YTZP-graphene multilayers produced by tape casting and spark plasma sintering. J Eur Ceram Soc. 2014;34(10):2427.

    Article  CAS  Google Scholar 

  37. Yan KL, Fan RH, Chen M, Sun K, Wang XA, Hou Q, Pan SB, Yu MX. An impregnation-reduction method to prepare graphite nanosheet/alumina composites and its high-frequency dielectric properties. Rare Met. 2017;36(3):205.

    Article  CAS  Google Scholar 

  38. Yazdani B, Xia YD, Ahmad I, Zhu YQ. Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites. J Eur Ceram Soc. 2015;35(1):179.

    Article  CAS  Google Scholar 

  39. Chen BB, Liu X, Zhao XQ, Wang Z, Wang LJ, Jiang W, Li JL. Preparation and properties of reduced graphene oxide/fused silica composites. Carbon. 2014;77:66.

    Article  CAS  Google Scholar 

  40. Wang K, Wang YF, Fan ZJ, Yan J, Wei T. Preparation of graphene nanosheet/alumina composites by spark plasma sintering. Mater Res Bull. 2011;46(2):315.

    Article  CAS  Google Scholar 

  41. Fan YC, Kang LJ, Zhou WW, Jiang W, Wang LJ, Kawasaki A. Control of doping by matrix in few-layer graphene/metal oxide composites with highly enhanced electrical conductivity. Carbon. 2015;81:83.

    Article  CAS  Google Scholar 

  42. Centeno A, Rocha VG, Alonso B, Fernandez A, Gutierrez-Gonzalez CF, Torrecillas R, Zurutuza A. Graphene for tough and electroconductive alumina ceramics. J Eur Ceram Soc. 2013;33(15–16):3201.

    Article  CAS  Google Scholar 

  43. Walker LS, Marotto VR, Rafiee MA, Koratkar N, Corral EL. Toughening in Graphene ceramic composites. ACS Nano. 2011;5(4):3182.

    Article  CAS  Google Scholar 

  44. Hintze C, Morita K, Riedel R, Ionescu E, Mera G. Facile sol–gel synthesis of reduced graphene oxide/silica nanocomposites. J Eur Ceram Soc. 2016;36(12):2923.

    Article  CAS  Google Scholar 

  45. Mohammad-Rezaei R, Razmi H, Jabbari M. Graphene ceramic composite as a new kind of surface-renewable electrode: application to the electroanalysis of ascorbic acid. Microchim Acta. 2014;181(15–16):1879.

    Article  CAS  Google Scholar 

  46. Rice RW, Wu CC, Borchelt F. Hardness grain-size relations in ceramics. J Am Ceram Soc. 1994;77(10):2539.

    Article  CAS  Google Scholar 

  47. Zhang SC, Fahrenholtz WG, Hilmas GE, Yadlowsky EJ. Pressureless sintering of carbon nanotube-Al2O3 composites. J Eur Ceram Soc. 2010;30(6):1373.

    Article  CAS  Google Scholar 

  48. Markandan K, Chin JK, Tan M. Recent progress in graphene based ceramic composites: a review. J Mater Res. 2017;32(1):84.

    Article  CAS  Google Scholar 

  49. Fan YC, Wang LJ, Jiang W. Graphene based oxide ceramic composites with high mechanical and functional performance: from preparation to property. J Inorg Mater. 2018;33(2):138.

    Article  Google Scholar 

  50. Grigoriev S, Peretyagin P, Smirnov A, Solis W, Diaz LA, Fernandez A, Torrecillas R. Effect of graphene addition on the mechanical and electrical properties of Al2O3-SiCw ceramics. J Eur Ceram Soc. 2017;37(6):2473.

    Article  CAS  Google Scholar 

  51. Tapasztó O, Puchy V, Horváth ZE, Fogarassy Z, Bódis E, Károly Z, Balázsi K, Dusza J, Tapasztó L. The effect of graphene nanoplatelet thickness on the fracture toughness of Si3N4 composites. Ceram Int. 2019;45(6):6858.

    Article  CAS  Google Scholar 

  52. Liu J, Guo HK, Su Y, Wang LB, Wei L, Yang G, Yang Y, Jiang KL. Spark plasma sintering of graphene platelet reinforced zirconia composites with improved mechanical performance. Mater Sci Eng, A. 2017;688:70.

    Article  CAS  Google Scholar 

  53. Lahiri D, Khaleghi E, Bakshi SR, Li W, Olevsky EA, Agarwal A. Graphene-induced strengthening in spark plasma sintered tantalum carbide–nanotube composite. Scr Mater. 2013;68(5):285.

    Article  CAS  Google Scholar 

  54. Tapaszto O, Kun P, Weber F, Gergely G, Balazsi K, Pfeifer J, Arato P, Kidari A, Hampshire S, Balazsi C. Silicon nitride based nanocomposites produced by two different sintering methods. Ceram Int. 2011;37(8):3457.

    Article  CAS  Google Scholar 

  55. Huang H, Chen W, Chen S, Wee ATS. Bottom-up growth of epitaxial graphene on 6H-SiC(0001). ACS Nano. 2008;2(12):2513.

    Article  CAS  Google Scholar 

  56. Park J, Mitchel WC, Grazulis L, Smith HE, Eyink KG, Boeckl JJ, Tomich DH, Pacley SD, Hoelscher JE. Epitaxial graphene growth by carbon molecular beam epitaxy (CMBE). Adv Mater. 2010;22(37):4140.

    Article  CAS  Google Scholar 

  57. Yannopoulos SN, Siokou A, Nasikas NK, Dracopoulos V, Ravani F, Papatheodorou GN. CO2 laser-induced growth of epitaxial graphene on 6HSiC (0001). Adv Funct Mater. 2012;22(1):113.

    Article  CAS  Google Scholar 

  58. Antonelou A, Dracopoulos V, Yannopoulos SN. Laser processing of SiC: from graphene-coated SiC particles to 3D graphene froths. Carbon. 2015;85:176.

    Article  CAS  Google Scholar 

  59. Miranzo P, Ramirez C, Roman-Manso B, Garzon L, Gutierrez HR, Terrones M, Ocal C, Osendi MI, Belmonte M. In situ processing of electrically conducting graphene/SiC nanocomposites. J Eur Ceram Soc. 2013;33(10):1665.

    Article  CAS  Google Scholar 

  60. So-Mang Kwon, Seok-Jae Lee, In-Jin Shon. Enhanced properties of nanostructured ZrO2-graphene composites rapidly sintered via high-frequency induction heating. Ceram Int. 2015;41(1):835.

    Article  CAS  Google Scholar 

  61. Ahmad I, Islam M, Abdo HS, Subhani T, Khalil KA, Almajid AA, Yazdani B, Zhu YQ. Toughening mechanisms and mechanical properties of graphene nanosheet-reinforced alumina. Mater Des. 2015;88:1234.

    Article  CAS  Google Scholar 

  62. Fan YC, Estili M, Igarashi G, Jiang W, Kawasaki A. The effect of homogeneously dispersed few-layer graphene on microstructure and mechanical properties of Al2O3 nanocomposites. J Eur Ceram Soc. 2014;34(2):443.

    Article  CAS  Google Scholar 

  63. Liu J, Yan HX, Reece MJ, Jiang K. Toughening of zirconia/alumina composites by the addition of graphene platelets. J Eur Ceram Soc. 2012;32(16):4185.

    Article  CAS  Google Scholar 

  64. Liu J, Yan HX, Jiang K. Mechanical properties of graphene platelet-reinforced alumina ceramic composites. Ceram Int. 2013;39(6):6215.

    Article  CAS  Google Scholar 

  65. Liu J, Li Z, Yan HX, Jiang KL. Spark plasma sintering of alumina composites with Graphene platelets and silicon carbide nanoparticles. Adv Eng Mater. 2014;16(9):1111.

    Article  CAS  Google Scholar 

  66. Fan YC, Igarashi G, Jiang W, Wang LJ, Kawasaki A. Highly strain tolerant and tough ceramic composite by incorporation of graphene. Carbon. 2015;90:274.

    Article  CAS  Google Scholar 

  67. Kim HJ, Lee SM, Oh YS, Yang YH, Lim YS, Yoon DH, Lee C, Kim JY, Ruoff RS. Unoxidized Graphene/alumina nanocomposite: fracture- and wear-resistance effects of Graphene on alumina matrix. Sci Rep-UK. 2014;4:5176.

    Article  CAS  Google Scholar 

  68. Liu J, Yang Y, Hassanin H, Jumbu N, Deng SA, Zuo Q, Jiang KL. Graphene-alumina nanocomposites with improved mechanical properties for biomedical applications. ACS Appl Mater Inter. 2016;8(4):2607.

    Article  CAS  Google Scholar 

  69. Del Rio F, Boado MG, Rama A, Guitian F. A comparative study on different aqueous-phase graphite exfoliation methods for few-layer graphene production and its application in alumina matrix composites. J Eur Ceram Soc. 2017;37(12):3681.

    Article  CAS  Google Scholar 

  70. Ahmad I, Islam M, Subhani T, Zhu YQ. Toughness enhancement in graphene nanoplatelet/SiC reinforced Al2O3 ceramic hybrid nanocomposites. Nanotechnology. 2016;27(42):425704.

    Article  CAS  Google Scholar 

  71. Jiang KL, Li JR, Liu J. Spark plasma sintering and characterization of Graphene platelet/ceramic composites. Adv Eng Mater. 2015;17(5):716.

    Article  CAS  Google Scholar 

  72. Llorente J, Roman-Manso B, Miranzo P, Belmonte M. Tribological performance under dry sliding conditions of graphene/silicon carbide composites. J Eur Ceram Soc. 2016;36(3):429.

    Article  CAS  Google Scholar 

  73. Belmonte M, Ramirez C, Gonzalez-Julian J, Schneider J, Miranzo P, Osendi MI. The beneficial effect of graphene nanofillers on the tribological performance of ceramics. Carbon. 2013;61:431.

    Article  CAS  Google Scholar 

  74. Tapaszto O, Balko J, Puchy V, Kun P, Dobrik G, Fogarassy Z, Horvath ZE, Dusza J, Balazsi K, Balazsi C, Tapaszto L. Highly wear-resistant and low-friction Si3N4 composites by addition of graphene nanoplatelets approaching the 2D limit. Sci Rep-UK. 2017;7(1):10087.

    Article  CAS  Google Scholar 

  75. Seiner H, Sedlak P, Koller M, Landa M, Ramirez C, Osendi MI, Belmonte M. Anisotropic elastic moduli and internal friction of graphene nanoplatelets/silicon nitride composites. Compos Sci Technol. 2013;75:93.

    Article  CAS  Google Scholar 

  76. Koller M, Seiner H, Landa M, Nieto A, Agarwal A. Anisotropic elastic and acoustic properties of bulk Graphene nanoplatelets consolidated by spark plasma sintering. Acta Phys Pol, A. 2015;128(4):670.

    Article  CAS  Google Scholar 

  77. Rutkowski P, Stobierski L, Zientara D, Jaworska L, Klimczyk P, Urbanik M. The influence of the graphene additive on mechanical properties and wear of hot-pressed Si3N4 matrix composites. J Eur Ceram Soc. 2015;35(1):87.

    Article  CAS  Google Scholar 

  78. Tapaszto O, Tapaszto L, Lemmel H, Puchy V, Dusza J, Balazsi C, Balazsi K. High orientation degree of graphene nanoplatelets in silicon nitride composites prepared by spark plasma sintering. Ceram Int. 2016;42(1):1002.

    Article  CAS  Google Scholar 

  79. Cheng YH, Lyu Y, Han WB, Hu P, Zhou SB, Zhang XH. Multiscale toughening of ZrB2-SiC-Graphene@ZrB2-SiC dual composite ceramics. J Am Ceram Soc. 2019;102(4):2041.

    CAS  Google Scholar 

  80. Zhang C, Boesl B, Silvestroni L, Sciti D, Agarwal A. Deformation mechanism in graphene nanoplatelet reinforced tantalum carbide using high load in situ indentation. Mater Sci Eng A-Struct. 2017;674(30):270.

    Google Scholar 

  81. Yadhukulakrishnan GB, Karumuri S, Rahman A, Singh RP, Kalkan AK, Harimkar SP. Spark plasma sintering of graphene reinforced zirconium diboride ultra-high temperature ceramic composites. Ceram Int. 2013;39(6):6637.

    Article  CAS  Google Scholar 

  82. Asl MS, Kakroudi MG. Characterization of hot-pressed graphene reinforced ZrB2–SiC composite. Mater Sci Eng, A. 2015;625:385.

    Article  CAS  Google Scholar 

  83. Nieto A, Lahiri D, Agarwal A. Graphene nanoplatelets reinforced tantalum carbide consolidated by spark plasma sintering. Mater Sci Eng, A. 2013;582:338.

    Article  CAS  Google Scholar 

  84. Hashemi R, Weng GJ. A theoretical treatment of graphene nanocomposites with percolation threshold, tunneling-assisted conductivity and microcapacitor effect in AC and DC electrical settings. Carbon. 2016;96:474.

    Article  CAS  Google Scholar 

  85. Qing YC, Wen QL, Luo F, Zhou WC. Temperature dependence of the electromagnetic properties of graphene nanosheet reinforced alumina ceramics in the X-band. J Mater Chem C. 2016;4(22):4853.

    Article  CAS  Google Scholar 

  86. Lee E, Choi KB, Lee SM, Kim JY, Jung JY, Baik SW, Lim YS, Kim SJ, Shim W. A scalable and facile synthesis of alumina/exfoliated graphite composites by attrition milling. RSC Adv. 2015;5(113):93267.

    Article  CAS  Google Scholar 

  87. Fan YC, Jiang W, Kawasaki A. Highly conductive few-layer graphene/Al2O3 nanocomposites with tunable charge carrier type. Adv Funct Mater. 2012;22(18):3882.

    Article  CAS  Google Scholar 

  88. Rutkowski P, Klimczyk P, Jaworska L, Stobierski L, Dubiel A. Thermal properties of pressure sintered alumina-graphene composites. J Therm Anal Calorim. 2015;122(1):105.

    Article  CAS  Google Scholar 

  89. Celik Y, Celik A, Flahaut E, Suvaci E. Anisotropic mechanical and functional properties of graphene-based alumina matrix nanocomposites. J Eur Ceram Soc. 2016;36(8):2075.

    Article  CAS  Google Scholar 

  90. Zong PA, Hanus R, Dylla M, Tang YS, Liao JC, Zhang QH, Snyder GJ, Chen LD. Skutterudite with graphene-modified grain-boundary complexion enhances ZT enabling high-efficiency thermoelectric device. Energy Environ Sci. 2017;10(1):183.

    Article  CAS  Google Scholar 

  91. Lin CJ, Lin IC, Tuan WH. Effect of graphene concentration on thermal properties of alumina-graphene composites formed using spark plasma sintering. J Mater Sci. 2017;52(3):1759.

    Article  CAS  Google Scholar 

  92. Chen C, Pan LM, Li XY, Zhang JX, Feng YB, Yang J. Mechanical and thermal properties of graphene nanosheets/magnesia composites. Ceram Int. 2017;43(13):10377.

    Article  CAS  Google Scholar 

  93. Ramirez C, Garzon L, Miranzo P, Osendi MI, Ocal C. Electrical conductivity maps in graphene nanoplatelet/silicon nitride composites using conducting scanning force microscopy. Carbon. 2011;49:3873.

    Article  CAS  Google Scholar 

  94. Ramirez C, Figueiredo FM, Miranzo P, Poza P, Osendi MI. Graphene nanoplatelet/silicon nitride composites with high electrical conductivity. Carbon. 2012;50:3607.

    Article  CAS  Google Scholar 

  95. Roman-Manso B, Domingues E, Figueiredo FM, Belmonte M, Miranzo P. Enhanced electrical conductivity of silicon carbide ceramics by addition of graphene nanoplatelets. J Eur Ceram Soc. 2015;35(10):2723.

    Article  CAS  Google Scholar 

  96. Tan YQ, Luo H, Zhang HB, Peng SM. Graphene nanoplatelet reinforced boron carbide composites with high electrical and thermal conductivity. J Eur Ceram Soc. 2016;36(11):2679.

    Article  CAS  Google Scholar 

  97. Sedlak R, Kovalcikova A, Mudra E, Rutkowski P, Dubiel A, Girman V, Bystricky R, Dusza J. Boron carbide/graphene platelet ceramics with improved fracture toughness and electrical conductivity. J Eur Ceram Soc. 2017;37(12):3773.

    Article  CAS  Google Scholar 

  98. Miranzo P, Garcia E, Ramirez C, Gonzalez-Julian J, Belmonte M, Osendi MI. Anisotropic thermal conductivity of silicon nitride ceramics containing carbon nanostructures. J Eur Ceram Soc. 2012;32(8):1847.

    Article  CAS  Google Scholar 

  99. Roman-Manso B, Chevillotte Y, Osendi MI, Belmonte M, Miranzo P. Thermal conductivity of silicon carbide composites with highly oriented graphene nanoplatelets. J Eur Ceram Soc. 2016;36(16):3987.

    Article  CAS  Google Scholar 

  100. Simsek ING, Nistal A, Garcia E, Perez-Coll D, Miranzo P, Osendi MI. The effect of graphene nanoplatelets on the thermal and electrical properties of aluminum nitride ceramics. J Eur Ceram Soc. 2017;37(12):3721.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51432004 and 51672041), the Fundamental Research Funds for the Central Universities (No. 2232018G-07), the Innovation Program of Shanghai Municipal Education Commission (No. 2017-01-07-00-03-E00025), the Program for Innovative Research Team in University of Ministry of Education of China (No. IRT_16R13) and Shanghai Sailing Program (No. 17YF1400400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, BY., Fan, SJ., Fan, YC. et al. Recent progress in ceramic matrix composites reinforced with graphene nanoplatelets. Rare Met. 39, 513–528 (2020). https://doi.org/10.1007/s12598-019-01306-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01306-2

Keywords

Navigation