Skip to main content

Advertisement

Log in

Bifunctional iron-phtalocyanine metal–organic framework catalyst for ORR, OER and rechargeable zinc–air battery

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Exploring non-noble metal and high-activity electrocatalysts through a simple and controllable protocol remains a great challenge for oxygen reduction reaction (ORR) and zinc–air batteries. Herein, we developed a melt polymerization strategy to synthesize iron-polyphthalocyanine (FePPc) metallic–organic frameworks (MOFs) over the carbon black matrix (FePPc@CB). Through non-covalent \(\uppi\)\(\uppi\) interactions, FePPc molecules can anchor on carbon matrix, thus facilitating the electron transfer process and stabilizing the systems. Owing to abundant free electrons and atomically MN4 catalytic sites in the macrocycle structure, FePPc@CB exhibits excellent oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) electrocatalytic activity. The FePPc@CB also delivers excellent performances for liquid and flexible all-solid-state batteries compared to that of commercial Pt/C, making it a promising ORR/OER electrocatalyst.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li Y, Dai H. Recent advances in zinc-air batteries. Chem Soc Rev. 2014;43(15):5143.

    Google Scholar 

  2. Tan P, Chen B, Xu H, Zhang H, Cai W, Ni M, Liu M, Shao Z. Flexible Zn– and Li–air batteries: recent advances, challenges, and future perspectives. Energy Environ Sci. 2017;10(10):2056.

    CAS  Google Scholar 

  3. Pan J, Xu YY, Yang H, Dong Z, Liu H, Xia BY. Advanced architectures and relatives of air electrodes in Zn–Air batteries. Adv Sci. 2018;5(4):1700691.

    Google Scholar 

  4. Zhao S, Wang DW, Amal R, Dai L. Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage. Adv Mater. 2018;31(9):1801526.

    Google Scholar 

  5. Peng Y, Lu B, Chen S. Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv Mater. 2018;30(48):1801995.

    Google Scholar 

  6. Xia W, Mahmood A, Liang Z, Zou R, Guo S. Earth-abundant nanomaterials for oxygen reduction. Angew Chem. 2016;55(8):2650.

    CAS  Google Scholar 

  7. Huang X, Shen T, Zhang T, Qiu H, Gu X, Ali Z, Hou Y. Efficient oxygen reduction catalysts of porous carbon nanostructures decorated with transition metal species. Adv Energy Mater. 2019;50(9):1900375.

    Google Scholar 

  8. Jin H, Guo C, Liu X, Liu J, Vasileff A, Jiao Y, Zheng Y, Qiao SZ. Emerging two-dimensional nanomaterials for electrocatalysis. Chem Rev. 2018;118(13):6337.

    CAS  Google Scholar 

  9. Choi CH, Lim HK, Chung MW, Chon G, Sahraie NR, Altin A, Sougrati MT, Stievano L, Oh HS, Park ES, Luo F, Strasser P, Dražić G, Mayrhofer K, Kim H, d Jaouen F. Achilles’ heel of iron-based catalysts during oxygen reduction in acidic medium. Energy Environ Sci. 2018;11:3176.

    CAS  Google Scholar 

  10. Zhu YG, Shang CQ, Wang ZU, Zhang JQ, Yang MY, Cheng H, Lu ZG. Effect of plating bath composition on chemical composition and oxygen reduction reaction activity of electrodeposited Pt–Co catalysts. Rare Met. 2019;38(2):95.

    Google Scholar 

  11. Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL. Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2019;38(9):832.

    CAS  Google Scholar 

  12. John H, Oscar S, Maura C, Lorenzo M. Hydrogen storage in a rare-earth perovskite-type oxide La0.6Sr0.4Co0.2Fe0.8O3 for battery applications. Rare Met. 2018;37(12):1003.

    Google Scholar 

  13. Pan Y, Liu S, Sun K, Chen X, Wang B, Wu K, Cao X, Cheong WC, Shen R, Han A, Chen Z, Zheng L, Luo J, Lin Y, Liu Y, Wang D, Peng Q, Zhang Q, Chen C, Li Y. A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe–N4 catalytic site:a superior trifunctional catalyst for overall water splitting and Zn–air batteries. Angew Chem Int Ed. 2018;57(28):8614.

    CAS  Google Scholar 

  14. Guo Y, Yuan P, Zhang J, Hu Y, Amiinu IS, Wang X, Zhou J, Xia H, Song Z, Xu Q, Mu S. Carbon nanosheets containing discrete Co–Nx–By–C active sites for efficient oxygen electrocatalysis and rechargeable Zn–air batteries. ACS Nano. 2018;12(2):1894.

    CAS  Google Scholar 

  15. Li Q, Chen W, Xiao H, Gong Y, Li Z, Zheng L, Zheng X, Yan W, Cheong WC, Shen R, Fu N, Gu L, Zhuang Z, Chen C, Wang D, Peng Q, Li J, Li Y. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv Mater. 2018;30(25):1800588.

    Google Scholar 

  16. Xiao M, Zhu J, Ma L, Jin Z, Ge J, Deng X, Hou Y, He Q, Li J, Jia Q, Mukerjee S, Yang R, Jiang Z, Su D, Liu C, Xing W. Microporous framework induced synthesis of single-atom dispersed Fe–N–C acidic ORR catalyst and its in situ reduced Fe–N4 active site identification revealed by X-ray absorption spectroscopy. ACS Catal. 2018;8(4):2824.

    CAS  Google Scholar 

  17. Zeng X, Shui J, Liu X, Liu Q, Li Y, Shang J, Zheng L, Yu R. Single-atom to single-atom grafting of Pt onto FeN4 center: Pt1@Fe–N–C multifunctional electrocatalyst with significantly enhanced properties. Adv Energy Mater. 2018;8(1):1701345.

    Google Scholar 

  18. Cheng W, Yuan P, Lv Z, Guo Y, Qiao Y, Xue X, Liu X, Bai W, Wang K, Xu Q, Zhang J. Boosting defective carbon by anchoring well-defined atomically dispersed metal-N4 sites for ORR, OER, and Zn–air batteries. Appl Catal B Environ. 2020;260:118198.

    CAS  Google Scholar 

  19. Wang YR, Huang Q, He CT, Chen Y, Liu J, Shen FC, Lan YQ. Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2. Nat Commun. 2018;9(1):4466.

    Google Scholar 

  20. Zhang FM, Sheng JL, Yang ZD, Sun XJ, Tang HL, Lu M, Dong H, Shen FC, Liu J, Lan YQ. Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew Chem Int Ed. 2018;57(37):12282.

    Google Scholar 

  21. Wang XL, Dong LZ, Qiao M, Tang YJ, Liu J, Li Y, Li SL, Su JX, Lan YQ. Exploring the performance improvement of the oxygen evolution reaction in a stable bimetal-organic framework system. Angew Chem Int Ed. 2018;57(31):9660.

    CAS  Google Scholar 

  22. Lin J, He JR, Qi F, Zheng BJ, Wang XQ, Yu B, Zhou KR, Zhang WL, Li YR, Chen YF. In-situ selenization of Co-based metal-organic frameworks as a highly efficient electrocatalyst for hydrogen evolution reaction. Electacta. 2017;247:258.

    CAS  Google Scholar 

  23. He JR, Chen YF, Arumugam M. Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li–S batteries. Energy Environ Sci. 2018;11:2560.

    CAS  Google Scholar 

  24. He JR, Lv WQ, Chen YF, Wen KC, Xu C, Zhang WL, Li YR, Qin W, He WD. Tellurium-impregnated porous cobalt-doped carbon polyhedra as superior cathodes for lithium–tellurium batteries. ACS Nano. 2017;11(8):8144.

    CAS  Google Scholar 

  25. Wang XQ, He JR, Yu B, Sun BC, Yang DX, Zhang XJ, Zhang QH, Zhang WL, Gu L, Chen YF. CoSe2 nanoparticles embedded MOF-derived Co–N–C nanoflake arrays as efficient and stable electrocatalyst for hydrogen evolution reaction. Appl Catal B Environ. 2019;258:117996.

    CAS  Google Scholar 

  26. He JR, Lv WQ, Chen YF, Xiong J, Wen KC, Xu C, Zhang WL, Li YR, Qin W, He WD. Three-dimensional hierarchical C–Co–N/Se derived from metal-organic framework as superior cathode for Li–Se batteries. J Power Sour. 2017;07:65.

    Google Scholar 

  27. He JR, Chen YF, Lv WQ, Wen KC, Xu C, Zhang WL, Li YR, Qin W, He WD. From metal–organic framework to Li2S@C–Co–N nanoporous architecture: a high-capacity cathode for lithium–sulfur batteries. ACS Nano. 2016;10(12):10981.

    CAS  Google Scholar 

  28. Du DY, Qin JS, Li SL, Su ZM, Lan YQ. Recent advances in porous polyoxometalatebased metal–organic framework materials. Chem Soc Rev. 2014;43:4615.

    CAS  Google Scholar 

  29. Jasinski R. A new fuel cell catalyst. Nature. 1964;201:1212.

    CAS  Google Scholar 

  30. Hijazi I, Bourgeteau T, Cornut R, Morozan A, Filoramo A, Leroy J, Derycke V, Jousselme B, Campidelli S. Carbon nanotube-templated synthesis of covalent porphyrin network for oxygen reduction reaction. J Am Chem Soc. 2014;136(17):6348.

    CAS  Google Scholar 

  31. Cao R, Thapa R, Kim H, Xu X, Gyu Kim M, Li Q, Park N, Liu M, Cho J. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat Commun. 2013;4:3076.

    Google Scholar 

  32. Zhu J, Jia N, Yang L, Su D, Park J, Choi Y, Gong K. Heterojunction nanowires having high activity and stability for the reduction of oxygen: formation by self-assembly of iron phthalocyanine with single walled carbon nanotubes (FePc/SWNTs). J Colloid Interface Sci. 2014;419:61.

    CAS  Google Scholar 

  33. Wang X, Wang B, Zhong J, Zhao F, Han N, Huang W, Zeng M, Fan J, Li Y. Iron polyphthalocyanine sheathed multiwalled carbon nanotubes: a high-performance electrocatalyst for oxygen reduction reaction. Nano Res. 2016;9(5):1497.

    CAS  Google Scholar 

  34. Strickland K, Miner E, Jia Q, Tylus U, Ramaswamy N, Liang W, Sougrati MT, Jaouen F, Mukerjee S. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination. Nat Commun. 2015;6:8343.

    Google Scholar 

  35. Zitolo A, Goellner V, Armel V, Sougrati MT, Mineva T, Stievano L, Fonda E, Jaouen F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat Mater. 2015;14(9):937.

    CAS  Google Scholar 

  36. Su CY, Cheng H, Li W, Liu ZQ, Li N, Hou Z, Bai FQ, Zhang HX, Ma TY. Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery. Adv Energy Mater. 2017;7(13):1602420.

    Google Scholar 

  37. Li Y, Chen B, Duan X, Chen S, Liu D, Zang K, Si R, Lou F, Wang X, Rønning M, Song L, Luo J, Chen D. Atomically dispersed Fe–N–P–C complex electrocatalysts for superior oxygen reduction. Appl Catal B Environ. 2019;249:306.

    CAS  Google Scholar 

  38. Liu W, Zhang L, Liu X, Liu X, Yang X, Miao S, Wang W, Wang A, Zhang T. Discriminating catalytically active FeNx species of atomically dispersed Fe–N–C catalyst for selective oxidation of the C–H bond. J Am Chem Soc. 2017;139(31):10790.

    CAS  Google Scholar 

  39. Varnell J, Tse EC, Schulz CE, Fister TT, Haasch RT, Timoshenko J, Frenkel AI, Gewirth AA. Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts. Nat Commun. 2016;7:12582.

    CAS  Google Scholar 

  40. Li Z, Zhuang Z, Lv F, Zhu H, Zhou L, Luo M, Zhu J, Lang Z, Feng S, Chen W, Mai L, Guo S. The marriage of the FeN4 moiety and Mxene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv Mater. 2018;30(43):1803220.

    Google Scholar 

  41. Xue X, Yang H, Yang T, Yuan P, Li Q, Mu S, Zheng X, Chi L, Zhu J, Li Y, Zhang J, Xu Q. N, P-coordinated fullerene-like carbon nanostructures with dual active centers toward highly-efficient multi-functional electrocatalysis for CO2RR, ORR and Zn–air battery. J Mater Chem A. 2019;7(25):15271.

    CAS  Google Scholar 

  42. Cheng Y, Wu X, Veder JP, Thomsen L, Jiang SP, Wang SY. Tuning the electrochemical property of the ultrafine metal-oxide nanoclusters by iron phthalocyanine as efficient catalysts for energy storage and conversion. Energy Environ Mater. 2019;2(1):5.

    CAS  Google Scholar 

  43. Yang W, Zhang Y, Liu X, Chen L, Jia J. In situ formed Fe–N doped metal organic framework@carbon nanotubes/graphene hybrids for a rechargeable Zn–air battery. Chem Commun. 2017;53(96):12934.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21875221, 21571157 and U1604123), the Youth Talent Support Program of High-Level Talents Special Support Plan in Henan Province (No. ZYQR201810148) and the Creative Talents in the Education Department of Henan Province (No. 19HASTIT039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Nan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, WZ., Liang, JL., Yin, HB. et al. Bifunctional iron-phtalocyanine metal–organic framework catalyst for ORR, OER and rechargeable zinc–air battery. Rare Met. 39, 815–823 (2020). https://doi.org/10.1007/s12598-020-01440-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01440-2

Keywords

Navigation