Skip to main content

Advertisement

Log in

Recent progress in Li-ion batteries with TiO2 nanotube anodes grown by electrochemical anodization

  • REVIEW
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Self-organized titanium dioxide (TiO2) nanotubes, which are prepared by electrochemical anodizing, have been widely researched as promising anodes for Li-ion batteries. Both nanotubular morphology and bulk structure of TiO2 nanotubes can be easily changed by adjusting the anodizing and annealing parameters. This is provided to investigate different phenomena by selectively adjusting a specific parameter of the Li+ insertion mechanism. In this paper, we reviewed how the morphology and crystallography of TiO2 nanotubes influence the electrochemical performance of Li+ batteries. In particular, electrochemical performances of amorphous and anatase titanium dioxide nanotube anodes were compared in detail. As we all know, TiO2 nanotube anodes have the advantages of nontoxicity, good stability, high safety and large specific surface area, in lithium-ion batteries. However, they suffer from poor electronic conductivity, inferior ion diffusivity and low theoretical capacity (335 mAh·g−1), which limit their practical application. Generally, there are two ways to overcome the shortcomings of titanium dioxide nanotube anodes, including doping and synthesis composites. The achievements and existing problems associated with doped TiO2 nanotube anodes and composite material anodes are summarized in the present review. Based on the analysis of lithium insertion mechanism of titanium dioxide nanotube electrodes, the prospects and possible research directions of TiO2 anodes in lithium-ion batteries are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu Y, Yang Y. Recent progress of TiO2-based anodes for Li ion batteries. J Nanomater. 2016;2016(4):1.

    Google Scholar 

  2. Yang Z, Choi D, Kerisit S, Rosso KM, Wang D, Zhang J, Graff G, Liu J. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: a review. J Power Sour. 2009;192(2):588.

    CAS  Google Scholar 

  3. Xiong P, Peng L, Chen D, Zhao Y, Wang X, Yu G. Two-dimensional nanosheets based Li-ion full batteries with high rate capability and flexibility. Nano Energy. 2015;12:816.

    CAS  Google Scholar 

  4. Auer A, Kunze-Liebhäuser J. Recent progress in understanding ion storage in self-organized anodic TiO2 nanotubes. Small Methods. 2019;3(8):20.

    Google Scholar 

  5. Ma D, Cao Z, Hu A. Si-based anode materials for Li-ion batteries: a mini review. Nanomicro Lett. 2014;6(4):347.

    Google Scholar 

  6. Zhang SS. The effect of the charging protocol on the cycle life of a Li-ion battery. J Power Sour. 2006;161(2):1385.

    CAS  Google Scholar 

  7. Park KS, Benayad A, Kang DJ, Doo SG. Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries. J Am Chem Soc. 2008;130(45):14930.

    CAS  Google Scholar 

  8. Holzapfel M, Alloin F, Yazami R. Calorimetric investigation of the reactivity of the passivation film on lithiated graphite at elevated temperatures. Electrochim Acta. 2004;49(4):581.

    CAS  Google Scholar 

  9. Chen Z, Belharouak I, Sun YK, Amine K. Titanium-based anode materials for safe lithium-ion batteries. Adv Funct Mater. 2013;23(8):959.

    CAS  Google Scholar 

  10. Yu J, Huang D, Liu Y, Luo H. Ternary Ag-TiO2/reduced graphene oxide nanocomposite as anode material for lithium ion battery. Inorg Chem Front. 2019;6(8):2126.

    CAS  Google Scholar 

  11. Li X, Zhang Y, Li T, Zhong Q, Li H, Huang J. Graphene nanoscrolls encapsulated TiO2(B) nanowires for lithium storage. J Power Sour. 2014;268:372.

    CAS  Google Scholar 

  12. Jin J, Huang SZ, Liu J, Li Y, Chen DS, Wang HE, Yu Y, Chen LH, Su BL. Design of new anode materials based on hierarchical, three dimensional ordered macro-mesoporous TiO2 for high performance lithium ion batteries. J Mater Chem A. 2014;2(25):9699.

    CAS  Google Scholar 

  13. Yan X, Wang Z, He M, Hou Z, Xia T, Liu G, Chen X. TiO2 nanomaterials as anode materials for lithium-ion rechargeable batteries. Energy Technol. 2015;3(8):801.

    CAS  Google Scholar 

  14. Aravindan V, Lee YS, Yazami R, Madhavi S. TiO2 polymorphs in ‘rocking-chair’ Li-ion batteries. Mater Today. 2015;18(6):345.

    CAS  Google Scholar 

  15. Park SJ, Paek YK, Lee H, Kim YJ. Lithium ion insertion in titania nanotube powders synthesized by rapid breakdown anodization. Electrochem Solid St. 2010;13(7):A85.

    CAS  Google Scholar 

  16. Huo KF, Gao B, Fu JJ, Zhao LZ, Chu PK. Fabrication, modification, and biomedical applications of anodized TiO2 nanotube arrays. RSC Adv. 2014;4(33):17300.

    CAS  Google Scholar 

  17. Albu SP, Roy P, Virtanen S, Schmuki P. Self-organized TiO2 nanotube arrays: critical effects on morphology and growth. Isr J Chem. 2010;50(4):453.

    CAS  Google Scholar 

  18. Awad NK, Edwards SL, Morsi YS. A review of TiO2 NTs on Ti metal: electrochemical synthesis, functionalization and potential use as bone implants. Mater Sci Eng C Mater. 2017;76:1401.

    CAS  Google Scholar 

  19. Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal. 1999;27(7):629.

    CAS  Google Scholar 

  20. Macak JM, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chem Int Ed Engl. 2005;44(14):2100.

    CAS  Google Scholar 

  21. Macak JM, Sirotna K, Schmuki P. Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochim Acta. 2005;50(18):3679.

    CAS  Google Scholar 

  22. Macak JM, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P. Smooth anodic TiO2 nanotubes. Angew Chem Int Ed Engl. 2005;44(45):7463.

    CAS  Google Scholar 

  23. Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P. TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci. 2007;11(1–2):3.

    CAS  Google Scholar 

  24. Roy P, Berger S, Schmuki P. TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed Engl. 2011;50(13):2904.

    CAS  Google Scholar 

  25. Zhou X, Nguyen NT, Özkan S, Schmuki P. Anodic TiO2 nanotube layers: why does self-organized growth occur—a mini review. Electrochem Commun. 2014;46:157.

    CAS  Google Scholar 

  26. Lee K, Mazare A, Schmuki P. One-dimensional titanium dioxide nanomaterials: nanotubes. Chem Rev. 2014;114(19):9385.

    CAS  Google Scholar 

  27. Beranek R, Tsuchiya H, Sugishima T, Macak JM, Taveira L, Fujimoto S, Kisch H, Schmuki P. Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes. Appl Phys Lett. 2005;87(24):243114.

    Google Scholar 

  28. Albu SP, Ghicov A, Aldabergenova S, Drechsel P, LeClere D, Thompson GE, Macak JM, Schmuki P. Formation of double-walled TiO2 nanotubes and robust anatase membranes. Adv Mater. 2008;20(21):4135.

    CAS  Google Scholar 

  29. Ghicov A, Albu SP, Hahn R, Kim D, Stergiopoulos T, Kunze J, Schiller CA, Falaras P, Schmuki P. TiO2 nanotubes in dye-sensitized solar cells: critical factors for the conversion efficiency. Chem Asian J. 2009;4(4):520.

    CAS  Google Scholar 

  30. Ghicov A, Schmuki P. Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem Commun (Camb). 2009;20:2791.

    Google Scholar 

  31. Zhang M, Wang C, Li H, Wang J, Li M, Chen X. Enhanced performance of lithium ion batteries from self-doped TiO2 nanotube anodes via an adjustable electrochemical process. Electrochim Acta. 2019;326:134972.

    CAS  Google Scholar 

  32. Savva AI, Smith KA, Lawson M, Croft SR, Weltner AE, Jones CD, Bull H, Simmonds PJ, Li L, Xiong H. Defect generation in TiO2 nanotube anodes via heat treatment in various atmospheres for lithium-ion batteries. Phys Chem Chem Phys. 2018;20(35):22537.

    CAS  Google Scholar 

  33. Lu Z, Yip CT, Wang L, Huang H, Zhou L. Hydrogenated TiO2 nanotube arrays as high-rate anodes for lithium-ion microbatteries. ChemPlusChem. 2012;77(11):991.

    CAS  Google Scholar 

  34. SteinerSteiner D, Auer A, Portenkirchner E, Kunze-Liebhäuser J. The role of surface films during lithiation of amorphous and anatase TiO2 nanotubes. J Electroanal Chem. 2018;812:166.

    Google Scholar 

  35. Auer A, Steiner D, Portenkirchner E, Kunze-Liebhäuser J. Nonequilibrium phase transitions in amorphous and anatase TiO2 Nanotubes. ACS Appl Energy Mater. 2018;1(5):1924.

    CAS  Google Scholar 

  36. He BL, Dong B, Li HL. Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium–ion battery. Electrochem Commun. 2007;9(3):425.

    CAS  Google Scholar 

  37. Kim SH, Choi SY. Fabrication of Cu-coated TiO2 nanotubes and enhanced electrochemical performance of lithium ion batteries. J Electroanal Chem. 2015;744:45.

    CAS  Google Scholar 

  38. Kirchgeorg R, Kallert M, Liu N, Hahn R, Killian MS, Schmuki P. Key factors for an improved lithium ion storage capacity of anodic TiO2 nanotubes. Electrochim Acta. 2016;198:56.

    CAS  Google Scholar 

  39. Janek J, Martin M, Becker KD. Physical chemistry of solids–the science behind materials engineering. Phys Chem Chem Phys. 2009;11(17):3010.

    CAS  Google Scholar 

  40. Xu H, Zhong W, Chen Q, Liu W, Li M, Su L, Gao C, Ren M. One-pot fabricating rambutan-like nitrogen-simultaneously-doped TiO2@carbon@TiO2 double shell composites with superior sodium storage for Na-ion batteries. J Mater Sci: Mater Electron. 2019;30(7):6395.

    CAS  Google Scholar 

  41. Ren M, Xu H, Li F, Liu W, Gao C, Su L, Li G, Hei J. Sugarapple-like N-doped TiO2@carbon core-shell spheres as high-rate and long-life anode materials for lithium-ion batteries. J Power Sour. 2017;353:237.

    CAS  Google Scholar 

  42. Ryu WH, Nam DH, Ko YS, Kim RH, Kwon HS. Electrochemical performance of a smooth and highly ordered TiO2 nanotube electrode for Li-ion batteries. Electrochim Acta. 2012;61:19.

    CAS  Google Scholar 

  43. Borghols WJH, Lutzenkirchen-Hecht D, Haake U, Chan W, Lafont U, Kelder EM, van Eck ERH, Kentgens APM, Mulder FM, Wagemaker M. Lithium storage in amorphous TiO2 nanoparticles. J Electrochem Soc. 2010;157(5):A582.

    CAS  Google Scholar 

  44. Xiong H, Yildirim H, Shevchenko EV, Prakapenka VB, Koo B, Slater MD, Balasubramanian M, Sankaranarayanan SKRS, Greeley JP, Tepavcevic S, Dimitrijevic NM, Podsiadlo P, Johnson CS, Rajh T. Self-improving anode for lithium-ion batteries based on amorphous to cubic phase transition in TiO2 nanotubes. J Phys Chem C. 2012;116(4):3181.

    CAS  Google Scholar 

  45. Ortiz GF, Hanzu I, Djenizian T, Lavela P, Tirado JL, Knauth P. Alternative Li-ion battery electrode based on self-organized titania nanotubes. Chem Mater. 2009;21(1):63.

    CAS  Google Scholar 

  46. Jiang Y, Hall C, Song N, Lau D, Burr PA, Patterson R, Wang DW, Ouyang Z, Lennon A. Evidence for fast lithium-ion diffusion and charge-transfer reactions in amorphous TiOx nanotubes: insights for high-rate electrochemical energy storage. ACS Appl Mater Interfaces. 2018;10(49):42513.

    CAS  Google Scholar 

  47. Ortiz GF, Hanzu I, Knauth P, Lavela P, Tirado JL, Djenizian T. TiO2 nanotubes manufactured by anodization of Ti thin films for on-chip Li-ion 2D microbatteries. Electrochim Acta. 2009;54(17):4262.

    CAS  Google Scholar 

  48. Guan D, Cai C, Wang Y. Amorphous and crystalline TiO2 nanotube arrays for enhanced Li-ion intercalation properties. J Nanosci Nanotechnol. 2011;11(4):3641.

    CAS  Google Scholar 

  49. Gao Q, Gu M, Nie A, Mashayek F, Wang C, Odegard GM, Shahbazian-Yassar R. Direct evidence of lithium-induced atomic ordering in amorphous TiO2 nanotubes. Chem Mater. 2014;26(4):1660.

    CAS  Google Scholar 

  50. Kashani H, Gharibi H, Javadian S, Kakemam J. Study of counter electrodes as an effective controlling factor of crystal orientation of TiO2 nanoarrays used as the anode in lithium-ion batteries. New J Chem. 2017;41(21):12442.

    CAS  Google Scholar 

  51. Chen JS, Tan YL, Li CM, Cheah YL, Luan DY, Madhavi S, Boey FYC, Archer LA, Lou XW. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J Am Chem Soc. 2010;132(17):6124.

    CAS  Google Scholar 

  52. Tasaki K, Goldberg A, Lian JJ, Walker M, Timmons A, Harris SJ. Solubility of lithium salts formed on the lithium-ion battery negative electrode surface in organic solvents. J Electrochem Soc. 2009;156(12):A1019.

    CAS  Google Scholar 

  53. Chadwick AV, Flack KW, Strange JH, Harding J. Defect structures and ionic transport in lithium-oxide. Solid State Ion. 1988;28:185.

    Google Scholar 

  54. Madian M, Giebeler L, Klose M, Jaumann T, Uhlemann M, Gebert A, Oswald S, Ismail N, Eychmüller A, Eckert J. Self-organized TiO2/CoO nanotubes as potential anode materials for lithium ion batteries. ACS Sustain Chem Eng. 2015;3(5):909.

    CAS  Google Scholar 

  55. Bi Z, Paranthaman MP, Menchhofer PA, Dehoff RR, Bridges CA, Chi M, Guo B, Sun XG, Dai S. Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. J Power Sour. 2013;222:461.

    CAS  Google Scholar 

  56. Wagemaker M, Borghols WJH, Mulder FM. Large impact of particle size on insertion reactions: a case for anatase LixTiO2. J Am Chem Soc. 2007;129(14):4323.

    CAS  Google Scholar 

  57. Zhu K, Wang Q, Kim JH, Pesaran AA, Frank AJ. Pseudocapacitive lithium-ion storage in oriented anatase TiO2 nanotube arrays. J Phys Chem C. 2012;116(22):11895.

    CAS  Google Scholar 

  58. Auer A, Portenkirchner E, Gotsch T, Valero-Vidal C, Penner S, Kunze-Liebhauser J. Preferentially oriented TiO2 nanotubes as anode material for Li-ion batteries: insight into Li-ion storage and lithiation kinetics. ACS Appl Mater Interfaces. 2017;9(42):36828.

    CAS  Google Scholar 

  59. Lamberti A, Garino N, Sacco A, Bianco S, Chiodoni A, Gerbaldi C. As-grown vertically aligned amorphous TiO2 nanotube arrays as high-rate Li-based micro-battery anodes with improved long-term performance. Electrochim Acta. 2015;151:222.

    CAS  Google Scholar 

  60. Zukalova M, Kalbac M, Kavan L, Exnar I, Graetzel M. Pseudocapacitive lithium storage in TiO2(B). Chem Mater. 2005;17(5):1248.

    CAS  Google Scholar 

  61. Fang HT, Liu M, Wang DW, Sun T, Guan DS, Li F, Zhou J, Sham TK, Cheng HM. Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays. Nanotechnology. 2009;20(22):225701.

    Google Scholar 

  62. Bresser D, Paillard E, Binetti E, Krueger S, Striccoli M, Winter M, Passerini S. Percolating networks of TiO2 nanorods and carbon for high power lithium insertion electrodes. J Power Sour. 2012;206:301.

    CAS  Google Scholar 

  63. Brumbarov J, Vivek JP, Leonardi S, Valero-Vidal C, Portenkirchner E, Kunze-Liebhäuser J. Oxygen deficient, carbon coated self-organized TiO2 nanotubes as anode material for Li-ion intercalation. J Mater Chem A. 2015;3(32):16469.

    CAS  Google Scholar 

  64. Froschl T, Hormann U, Kubiak P, Kucerova G, Pfanzelt M, Weiss CK, Behm RJ, Husing N, Kaiser U, Landfester K, Wohlfahrt-Mehrens M. High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis. Chem Soc Rev. 2012;41(15):5313.

    CAS  Google Scholar 

  65. Jiang C, Wei M, Qi Z, Kudo T, Honma I, Zhou H. Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode. J Power Sour. 2007;166(1):239.

    CAS  Google Scholar 

  66. Kim JH, Zhu K, Kim JY, Frank AJ. Tailoring oriented TiO2 nanotube morphology for improved Li storage kinetics. Electrochim Acta. 2013;88:123.

    CAS  Google Scholar 

  67. Wei W, Oltean G, Tai CW, Edström K, Björefors F, Nyholm L. High energy and power density TiO2 nanotube electrodes for 3D Li-ion microbatteries. J Mater Chem A. 2013;1(28):8160.

    CAS  Google Scholar 

  68. Gonzalez JR, Alcantara R, Ortiz GF, Nacimiento F, Tirado JL. Controlled growth and application in lithium and sodium batteries of high-aspect-ratio, self-organized titania nanotubes. J Electrochem Soc. 2013;160(9):A1390.

    CAS  Google Scholar 

  69. Paul N, Brumbarov J, Paul A, Chen Y, Moulin JF, Müller-Buschbaum P, Kunze-Liebhäuser J, Gilles R. GISAXS and TOF-GISANS studies on surface and depth morphology of self-organized TiO2 nanotube arrays: model anode material in Li-ion batteries. J Appl Crystallogr. 2015;48(2):444.

    CAS  Google Scholar 

  70. Zhou H, Zhang Y. Electrochemically Self-doped TiO2 nanotube arrays for supercapacitors. J Phys Chem C. 2014;118(11):5626.

    CAS  Google Scholar 

  71. Mirabolghasemi H, Liu N, Lee K, Schmuki P. Formation of ‘single walled’ TiO2 nanotubes with significantly enhanced electronic properties for higher efficiency dye-sensitized solar cells. Chem Commun (Camb). 2013;49(20):2067.

    CAS  Google Scholar 

  72. Pan D, Huang H, Wang X, Wang L, Liao H, Li Z, Wu M. C-axis preferentially oriented and fully activated TiO2 nanotube arrays for lithium ion batteries and supercapacitors. J Mater Chem A. 2014;2(29):11454.

    CAS  Google Scholar 

  73. Liu S, Yu J, Jaroniec M. Anatase TiO2 with dominant high-energy facets: synthesis, properties, and applications. Chem Mater. 2011;23(18):4085.

    CAS  Google Scholar 

  74. Lee S, Park IJ, Kim DH, Seong WM, Kim DW, Han GS, Kim JY, Jung HS, Hong KS. Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion. Energy Environ Sci. 2012;5(7):7989.

    CAS  Google Scholar 

  75. Seong WM, Kim DH, Park IJ, Do Park G, Kang K, Lee S, Hong KS. Roughness of Ti substrates for control of the preferred orientation of TiO2 nanotube arrays as a new orientation factor. J Phys Chem C. 2015;119(23):13297.

    Google Scholar 

  76. Shin JY, Joo JH, Samuelis D, Maier J. Oxygen-deficient TiO2−δ nanoparticles via hydrogen reduction for high rate capability lithium batteries. Chem Mater. 2012;24(3):543.

    CAS  Google Scholar 

  77. Allam NK, Grimes CA. Effect of cathode material on the morphology and photoelectrochemical properties of vertically oriented TiO2 nanotube arrays. Sol Energy Mater Sol Cells. 2008;92(11):1468.

    CAS  Google Scholar 

  78. Li GS, Li LP, Boerio-Goates J, Woodfield BF. High purity anatase TiO2 nanocrystals: near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. J Am Chem Soc. 2005;127(24):8659.

    CAS  Google Scholar 

  79. Li YM, Young L. Non-thickness-limited growth of anodic oxide films on tantalum. J Electrochem Soc. 2001;148(9):B337.

    CAS  Google Scholar 

  80. Wang W, Zhang J, Huang H, Wu Z, Zhang Z. Surface-modification and characterization of H-titanate nanotube. Colloids Surf A. 2008;317(1–3):270.

    CAS  Google Scholar 

  81. Berger S, Hahn R, Roy P, Schmuki P. Self-organized TiO2 nanotubes: factors affecting their morphology and properties. Phys Status Solidi B. 2010;247(10):2424.

    CAS  Google Scholar 

  82. Wei J, Liu JX, Wu ZY, Zhan ZL, Shi J, Xu K. Research on the electrochemical performance of rutile and anatase composite TiO2 nanotube arrays in lithium-ion batteries. J Nanosci Nanotechnol. 2015;15(7):5013.

    CAS  Google Scholar 

  83. Macklin WJ, Neat RJ. Performance of titanium dioxide-based cathodes in a lithium polymer electrolyte cell. Solid State Ion. 1992;53:694.

    Google Scholar 

  84. Kyeremateng NA, Vacandio F, Sougrati MT, Martinez H, Jumas JC, Knauth P, Djenizian T. Effect of Sn-doping on the electrochemical behaviour of TiO2 nanotubes as potential negative electrode materials for 3D Li-ion micro batteries. J Power Sour. 2013;224:269.

    CAS  Google Scholar 

  85. Duan J, Hou H, Liu X, Yan C, Liu S, Meng R, Hao Z, Yao Y, Liao Q. In situ Ti3+-doped TiO2 nanotubes anode for lithium ion battery. J Porous Mater. 2016;23(3):837.

    CAS  Google Scholar 

  86. Deng D, Kim MG, Lee JY, Cho J. Green energy storage materials: nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ Sci. 2009;2(8):818.

    CAS  Google Scholar 

  87. Li Y, Luo J, Hu X, Wang X, Liang J, Yu K. Fabrication of TiO2 hollow nanostructures and their application in Lithium ion batteries. J Alloys Compd. 2015;651:685.

    CAS  Google Scholar 

  88. Kim HS, Yu SH, Sung YE, Kang SH. Carbon treated self-ordered TiO2 nanotube arrays with enhanced lithium-ion intercalation performance. J Alloys Compd. 2014;597:275.

    CAS  Google Scholar 

  89. Zhang M, Yin K, Hood ZD, Bi Z, Bridges CA, Dai S, Meng YS, Paranthaman MP, Chi M. In situ TEM observation of the electrochemical lithiation of N-doped anatase TiO2 nanotubes as anodes for lithium-ion batteries. J Mater Chem A. 2017;5(39):20651.

    CAS  Google Scholar 

  90. Choi J, Park H, Hoffmann MR. Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J Phys Chem C. 2010;114(2):783.

    CAS  Google Scholar 

  91. Lin SH, Ou CC, Su MD, Yang CS. Photo-catalytic behavior of vanadia incorporated titania nanoparticles. Catal Sci Technol. 2013;3(8):2081.

    CAS  Google Scholar 

  92. Lu XH, Wang GM, Zhai T, Yu MH, Gan JY, Tong YX, Li Y. Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 2012;12(3):1690.

    CAS  Google Scholar 

  93. Wu H, Xu C, Xu J, Lu L, Fan Z, Chen X, Song Y, Li D. Enhanced supercapacitance in anodic TiO2 nanotube films by hydrogen plasma treatment. Nanotechnology. 2013;24(45):455401.

    Google Scholar 

  94. Liu DW, Zhang YH, Xiao P, Garcia BB, Zhang QF, Zhou XY, Jeong YH, Cao GZ. TiO2 nanotube arrays annealed in CO exhibiting high performance for lithium ion intercalation. Electrochim Acta. 2009;54(27):6816.

    CAS  Google Scholar 

  95. Salari M, Konstantinov K, Liu HK. Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies. J Mater Chem. 2011;21(13):5128.

    CAS  Google Scholar 

  96. Liu DW, Xiao P, Zhang YH, Garcia BB, Zhang QF, Guo Q, Champion R, Cao GZ. TiO2 nanotube arrays annealed in N2 for efficient lithium-ion intercalation. J Phys Chem C. 2008;112(30):11175.

    CAS  Google Scholar 

  97. Wang G, Yang Y, Han D, Li Y. Oxygen defective metal oxides for energy conversion and storage. Nano Today. 2017;13:23.

    CAS  Google Scholar 

  98. Fan L, Li X, Yan B, Feng J, Xiong D, Li D, Gu L, Wen Y, Lawes S, Sun X. Controlled SnO2 crystallinity effectively dominating sodium storage performance. Adv Energy Mater. 2016;6(10):1502057.

    Google Scholar 

  99. Liao AZ, Wang CW, Chen JB, Zhang XQ, Li Y, Wang J. Remarkably improved field emission of TiO2 nanotube arrays by annealing atmosphere engineering. Mater Res Bull. 2015;70:988.

    CAS  Google Scholar 

  100. Sang LX, Zhang ZY, Ma CF. Photoelectrical and charge transfer properties of hydrogen-evolving TiO2 nanotube arrays electrodes annealed in different gases. Int J Hydrogen Energy. 2011;36(8):4732.

    CAS  Google Scholar 

  101. Qiu J, Li S, Gray E, Liu H, Gu QF, Sun C, Lai C, Zhao H, Zhang S. Hydrogenation synthesis of blue TiO2 for high-performance lithium-ion batteries. J Phys Chem C. 2014;118(17):8824.

    CAS  Google Scholar 

  102. Wang GM, Wang HY, Ling YC, Tang YC, Yang XY, Fitzmorris RC, Wang CC, Zhang JZ, Li Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2011;11(7):3026.

    CAS  Google Scholar 

  103. Swider-Lyons KE, Love CT, Rolison DR. Improved lithium capacity of defective V2O5 materials. Solid State Ion. 2002;152:99.

    Google Scholar 

  104. Koo B, Xiong H, Slater MD, Prakapenka VB, Balasubramanian M, Podsiadlo P, Johnson CS, Rajh T, Shevchenko EV. Hollow iron oxide nanoparticles for application in lithium ion batteries. Nano Lett. 2012;12(5):2429.

    CAS  Google Scholar 

  105. Hahn BP, Long JW, Mansour AN, Pettigrew KA, Osofsky MS, Rolison DR. Electrochemical Li-ion storage in defect spinel iron oxides: the critical role of cation vacancies. Energy Environ Sci. 2011;4(4):1495.

    CAS  Google Scholar 

  106. Xiong H, Yildirim H, Podsiadlo P, Zhang J, Prakapenka VB, Greeley JP, Shevchenko EV, Zhuravlev KK, Tkachev S, Sankaranarayanan SK, Rajh T. Compositional tuning of structural stability of lithiated cubic titania via a vacancy-filling mechanism under high pressure. Phys Rev Lett. 2013;110(7):078304.

    Google Scholar 

  107. Liao WJ, Yang JW, Zhou H, Murugananthan M, Zhang YR. Electrochemically self-doped TiO2 nanotube arrays for efficient visible light photoelectrocatalytic degradation of contaminants. Electrochim Acta. 2014;136:310.

    CAS  Google Scholar 

  108. Zhu WD, Wang CW, Chen JB, Li Y, Wang J. Enhanced field emission from Ti3+ self-doped TiO2 nanotube arrays synthesized by a facile cathodic reduction process. Appl Surf Sci. 2014;301:525.

    CAS  Google Scholar 

  109. Li H, Chen Z, Tsang CK, Li Z, Ran X, Lee C, Nie B, Zheng L, Hung T, Lu J, Pan B, Li YY. Electrochemical doping of anatase TiO2 in organic electrolytes for high-performance supercapacitors and photocatalysts. J Mater Chem A. 2014;2(1):229.

    CAS  Google Scholar 

  110. Duan J, Hou H, Liu X, Liao Q, Liu S, Yao Y. Sulfonated poly(phenylene oxide)/Ti3+/TiO2 nanotube arrays membrane/electrode with high performances for lithium ion battery. Ionics. 2017;23(11):3037.

    CAS  Google Scholar 

  111. Li Z, Ding Y, Kang W, Li C, Lin D, Wang X, Chen Z, Wu M, Pan D. Reduction mechanism and capacitive properties of highly electrochemically reduced TiO2 nanotube arrays. Electrochim Acta. 2015;161:40.

    CAS  Google Scholar 

  112. Fabregat-Santiago F, Barea EM, Bisquert J, Mor GK, Shankar K, Grimes CA. High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping. J Am Chem Soc. 2008;130(34):11312.

    CAS  Google Scholar 

  113. Meekins BH, Kamat PV. Got TiO2 nanotubes lithium ion intercalation can boost their photoelectrochemical performance. ACS Nano. 2009;3(11):3437.

    CAS  Google Scholar 

  114. Idígoras J, Berger T, Anta JA. Modification of mesoporous TiO2 films by electrochemical doping: impact on photoelectrocatalytic and photovoltaic performance. The J Phys Chem C. 2013;117(4):1561.

    Google Scholar 

  115. Xu C, Song Y, Lu LF, Cheng CW, Liu DF, Fang XH, Chen XY, Zhu XF, Li DD. Electrochemically hydrogenated TiO2 nanotubes with improved photoelectrochemical water splitting performance. Nanoscale Res Lett. 2013;8:7.

    Google Scholar 

  116. Song W, Luo H, Hanson K, Concepcion JJ, Brennaman MK, Meyer TJ. Visualization of cation diffusion at the TiO2 interface in dye sensitized photoelectrosynthesis cells (DSPEC). Energy Environ Sci. 2013;6(4):1240.

    CAS  Google Scholar 

  117. Zhou H, Zhang Y. Enhancing the capacitance of TiO2 nanotube arrays by a facile cathodic reduction process. J Power Sour. 2013;239:128.

    CAS  Google Scholar 

  118. Ghicov A, Yamamoto M, Schmuki P. Lattice widening in niobium-doped TiO2 nanotubes: efficient ion intercalation and swift electrochromic contrast. Angew Chem Int Ed Engl. 2008;47(41):7934.

    CAS  Google Scholar 

  119. Zhi J, Cui H, Wang Z, Huang F. Surface confined titania redox couple for ultrafast energy storage. Mater Horiz. 2018;5(4):691.

    CAS  Google Scholar 

  120. Zhang Y, Du F, Yan X, Jin Y, Zhu K, Wang X, Li H, Chen G, Wang C, Wei Y. Improvements in the electrochemical kinetic properties and rate capability of anatase titanium dioxide nanoparticles by nitrogen doping. ACS Appl Mater Interfaces. 2014;6(6):4458.

    CAS  Google Scholar 

  121. Yoon S, Bridges CA, Unocic RR, Paranthaman MP. Mesoporous TiO2 spheres with a nitridated conducting layer for lithium-ion batteries. J Mater Sci. 2013;48(15):5125.

    CAS  Google Scholar 

  122. Salian GD, Koo BM, Lefevre C, Cottineau T, Lebouin C, Tesfaye AT, Knauth P, Keller V, Djenizian T. Niobium alloying of self-organized TiO2 nanotubes as an anode for lithium-ion microbatteries. Adv Mater Technol. 2018;3(3):1700274.

    Google Scholar 

  123. Fraoucene H, Sugiawati VA, Hatem D, Belkaid MS, Vacandio F, Eyraud M, Pasquinelli M, Djenizian T. Optical and electrochemical properties of self-organized TiO2 nanotube arrays from anodized Ti-6Al-4 V alloy. Front Chem. 2019;7:66.

    CAS  Google Scholar 

  124. Weibel A, Bouchet R, Savin SLP, Chadwick AV, Lippens PE, Womes M, Knauth P. Local atomic and electronic structure in nanocrystalline Sn-doped anatase TiO2. ChemPhysChem. 2006;7(11):2377.

    CAS  Google Scholar 

  125. Fresno F, Tudela D, Coronado JM, Soria J. Synthesis of Ti1−xSnxO2 nanosized photocatalysts in reverse microemulsions. Catal Today. 2009;143(3–4):230.

    CAS  Google Scholar 

  126. Wang Y, Smarsly BM, Djerdj I. Niobium doped TiO2 with mesoporosity and its application for lithium insertion. Chem Mater. 2010;22(24):6624.

    CAS  Google Scholar 

  127. Long M, Rack HJ. Titanium alloys in total joint replacement: a materials science perspective. Biomaterials. 1998;19(18):1621.

    CAS  Google Scholar 

  128. Jo CI, Jeong YH, Choe HC, Brantley WA. Hydroxyapatite precipitation on nanotubular films formed on Ti–6Al–4 V alloy for biomedical applications. Thin Solid Films. 2013;549:135.

    CAS  Google Scholar 

  129. Su X, Wu Q, Li J, Xiao X, Lott A, Lu W, Sheldon BW, Wu J. Silicon-based nanomaterials for lithium-ion batteries: a review. Adv Energy Mater. 2014;4(1):1300882.

    Google Scholar 

  130. Brumbarov J, Kunze-Liebhäuser J. Silicon on conductive self-organized TiO2 nanotubes-a high capacity anode material for Li-ion batteries. J Power Sour. 2014;258:129.

    CAS  Google Scholar 

  131. Nemaga AW, Mallet J, Michel J, Guery C, Molinari M, Morcrette M. All electrochemical process for synthesis of Si coating on TiO2 nanotubes as durable negative electrode material for lithium ion batteries. J Power Sour. 2018;393:43.

    CAS  Google Scholar 

  132. Lee G, Kim S, Kim S, Choi J. SiO2/TiO2 composite film for high capacity and excellent cycling stability in lithium-ion battery anodes. Adv Funct Mater. 2017;27(39):1703538.

    Google Scholar 

  133. Wu X, Zhang S, Wang L, Du Z, Fang H, Ling Y, Huang Z. Coaxial SnO2@TiO2 nanotube hybrids: from robust assembly strategies to potential application in Li+ storage. J Mater Chem. 2012;22(22):11151.

    CAS  Google Scholar 

  134. Zhang P, Zhu S, He Z, Wang K, Fan H, Zhong Y, Chang L, Shao H, Wang J, Zhang J, Cao CN. Photochemical synthesis of SnO2/TiO2 composite nanotube arrays with enhanced lithium storage performance. J Alloys Compd. 2016;674:1.

    CAS  Google Scholar 

  135. Tang YP, Tan XX, Hou GY, Zheng GQ. Nanocrystalline Li4Ti5O12-coated TiO2 nanotube arrays as three-dimensional anode for lithium-ion batteries. Electrochim Acta. 2014;117:172.

    CAS  Google Scholar 

  136. Guan D, Li J, Gao X, Yuan C. Controllable synthesis of MoO3-deposited TiO2 nanotubes with enhanced lithium-ion intercalation performance. J Power Sour. 2014;246:305.

    CAS  Google Scholar 

  137. Zheng L, Han S, Liu H, Yu P, Fang X. Hierarchical MoS2 nanosheet@TiO2 nanotube array composites with enhanced photocatalytic and photocurrent performances. Small. 2016;12(11):1527.

    CAS  Google Scholar 

  138. Su L, Jing Y, Zhou Z. Li ion battery materials with core-shell nanostructures. Nanoscale. 2011;3(10):3967.

    CAS  Google Scholar 

  139. Menéndez R, Alvarez P, Botas C, Nacimiento F, Alcántara R, Tirado JL, Ortiz GF. Self-organized amorphous titania nanotubes with deposited graphene film like a new heterostructured electrode for lithium ion batteries. J Power Sour. 2014;248:886.

    Google Scholar 

  140. Huang H, Yu J, Gan Y, Xia Y, Liang C, Zhang J, Tao X, Zhang W. Hybrid nanoarchitecture of TiO2 nanotubes and graphene sheet for advanced lithium ion batteries. Mater Res Bull. 2017;96:425.

    CAS  Google Scholar 

  141. Shen L, Zhang X, Li H, Yuan C, Cao G. Design and tailoring of a three-dimensional TiO2–graphene–carbon nanotube nanocomposite for fast lithium storage. J Phys Chem Lett. 2011;2(24):3096.

    CAS  Google Scholar 

  142. Zhen M, Su L, Yuan Z, Liu L, Zhou Z. Well-distributed TiO2 nanocrystals on reduced graphene oxides as high-performance anode materials for lithium ion batteries. RSC Adv. 2013;3(33):13696.

    CAS  Google Scholar 

  143. Sun XC, Zhang YF, Gu L, Hu LL, Feng K, Chen ZW, Cui B. Nanocomposite of TiO2 nanoparticles-reduced graphene oxide with high-rate performance for Li-Ion battery. ECS Trans. 2015;64(23):11.

    CAS  Google Scholar 

  144. Kim HS, Kang SH, Chung YH, Sung YE. Conformal Sn coated TiO2 nanotube arrays and its electrochemical performance for high rate lithium-ion batteries. Electrochem Solid State Lett. 2010;13(2):A15.

    CAS  Google Scholar 

  145. Meng R, Hou H, Liu X, Duan J, Liu S. Binder-free combination of amorphous TiO2 nanotube arrays with highly conductive Cu bridges for lithium ion battery anode. Ionics. 2016;22(9):1527.

    CAS  Google Scholar 

  146. Fang D, Huang K, Liu S, Li Z. Electrochemical properties of ordered TiO2 nanotube loaded with Ag nano-particles for lithium anode material. J Alloys Compd. 2008;464(1–2):L5.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 61376017), the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University (No. CUSF-DH-D-2020094) and the Shanghai Sailing Program (No. 17YF1400600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Rui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, MM., Chen, JY., Li, H. et al. Recent progress in Li-ion batteries with TiO2 nanotube anodes grown by electrochemical anodization. Rare Met. 40, 249–271 (2021). https://doi.org/10.1007/s12598-020-01499-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01499-x

Keywords

Navigation