Skip to main content

Advertisement

Log in

Soybean drought-stressed plants impair Anticarsia gemmatalis (Lepidoptera: Erebidae) midgut proteolytic activity and survival

  • Original Article
  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Soybean plants are exposed to multiple stresses during development. Co-occurring stresses can activate common defense pathways on plants, increasing end products concentrations, such as protease inhibitors (PIs). Here, we evaluated the impact of drought stress on soybean defense mechanisms regarding PIs. Furthermore, the midgut proteolytic activity and survival of A. gemmatalis larvae fed with drought-stressed and well-watered plants were assessed. The lipoxygenase activity remained similar on soybean exposed to moderate (−0.6 and − 1.0 MPa) and severe (−1.6 MPa) drought stresses, however were higher than the irrigated control. The PIs activity on soybean was only induced due to herbivory at those exposed to moderate stress (−0.6 and − 1.0 MPa). The total-proteases and trypsin-like reduced activities in the midgut of A. gemmatalis that fed on moderate-stressed plants reflected the effects of the PIs induced after herbivory. Furthermore, A. gemmatalis showed reduced survival on drought-stressed plants over those well-watered. The results add knowledge about factors that limit A. gemmatalis performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akbar SMD, Jaba J, Regode V, Kumar GS, Sharma HC (2018) Plant protease inhibitors and their interactions with insect gut proteinases. In: The Biology of Plant-Insect Interactions, CRC Press, pp. 1–47.

  • Axelred, B. (1981). Lipoxygenase from soybeans. Methods in Enzymology, 71, 441–451.

    Article  Google Scholar 

  • Badenes-Perez, F. R., Nault, B. A., & Shelton, A. M. (2005). Manipulating the attractiveness and suitability of hosts for diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology, 98(3), 836–844.

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Bioch.

  • Baysal, T., & Demirdöven, A. (2007). Lipoxygenase in fruits and vegetables: A review. Enzyme and Microbial Technology, 40(4), 491–496.

    Article  CAS  Google Scholar 

  • Carriere, Y., Brown, Z. S., Downes, S. J., Gujar, G., Epstein, G., Omoto, C., et al. (2019). Governing evolution: A socioecological comparison of resistance management for insecticidal transgenic Bt crops among four countries. Ambio, 49, 1–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Casaretto, J. A., Zúñiga, G. E., & Corcuera, L. J. (2004). Abscisic acid and jasmonic acid affect proteinase inhibitor activities in barley leaves. Journal of Plant Physiology, 161(4), 389–396.

    Article  CAS  PubMed  Google Scholar 

  • Copolovici, L., Kännaste, A., Remmel, T., & Niinemets, Ü. (2014). Volatile organic compound emissions from Alnus glutinosa under interacting drought and herbivory stresses. Environmental and Experimental Botany, 100, 55–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutinho, F. S., Santos, D. S., Lima, L. L., Vital, C. E., Santos, L. A., Pimenta, M. R., Silva, J. C., Soares-Ramos, J. R. L., Mehta, A., Fontes, E. P. B., & Ramos, H. J. O. (2019). Mechanism of the drought tolerance of a transgenic soybean overexpressing the molecular chaperone BiP. Physiol Mol Biol Pla, 25, 457–472.

    Article  CAS  Google Scholar 

  • Dantas SAG, Silva FCS, Silva LJ, Silva FL (2017). Strategy for selection of soybean genotypes tolerant to drought during germination. Genet. Mol. Res. 16 (2): gmr16029654.

  • da Silva Júnior, N. R., Vital, C. E., de Almeida, B. R., Faustino, V. A., Monteiro, L. P., Barros, E., et al. (2020). Intestinal proteolytic profile changes during larval development of Anticarsia gemmatalis caterpillars. Archives of Insect Biochemistry and Physiology, 103(1), e21631.

    Article  PubMed  CAS  Google Scholar 

  • da Silva, R. S., Kumar, L., Shabani, F., Ribeiro, A. V., & Picanço, M. C. (2018). Dry stress decreases areas suitable for Neoleucinodes elegantalis (Lepidoptera: Crambidae) and affects its survival under climate predictions in South America. Ecol Inform, 46, 103–113.

    Article  Google Scholar 

  • Dastranj, M., Borzoui, E., Bandani, A. R., & Franco, O. L. (2018). Inhibitory effects of an extract from non-host plants on physiological characteristics of two major cabbage pests. B Entomol Res, 108(3), 370–379.

    Article  CAS  Google Scholar 

  • De Bruxelles, G. L., & Roberts, M. R. (2001). Signals regulating multiple responses to wounding and herbivores. Critical Reviews in Plant Sciences, 20(5), 487–521.

    Article  Google Scholar 

  • Fehr WR, Caviness CE (1977) Stages of soybean development.

  • Fiorentino, A., D'Abrosca, B., Pacifico, S., Golino, A., Mastellone, C., Oriano, P., & Monaco, P. (2007). Reactive oxygen species scavenging activity of flavone glycosides from Melilotus neapolitana. Molecules, 12(2), 263–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer, C. H., Lam, H. M., Nguyen, H. T., Siddique, K. H. M., Varshney, R., Colmer, T. D., et al. (2016). Neglecting legumes has compromised global food and nutritional security. Nat. Plants, 2(16112), 10–1038.

    Google Scholar 

  • Greene, G. L., Leppla, N. C., & Dickerson, W. A. (1976). Velvetbean caterpillar: A rearing procedure and artificial medium. Journal of Economic Entomology, 69(4), 487–488.

    Article  Google Scholar 

  • Hou, Y., Meng, K., Han, Y., Ban, Q., Wang, B., Suo, J., et al. (2015). The persimmon 9-lipoxygenase gene DkLOX3 plays positive roles in both promoting senescence and enhancing tolerance to abiotic stress. Frontiers in Plant Science, 6, 1073.

    Article  PubMed  PubMed Central  Google Scholar 

  • Howe, G. A., & Jander, G. (2008). Plant immunity to insect herbivores. Annual Review of Plant Biology, 59, 41–66.

    Article  CAS  PubMed  Google Scholar 

  • Huang, T., & Jander, G. (2017). Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branched-chain amino acids in Arabidopsis thaliana. Planta, 246(4), 737–747.

    Article  CAS  PubMed  Google Scholar 

  • Ibarra-Vázquez, S. E., Arcos-Cavazos, G., Terán-Vargas, A. P., González-Gaona, O. J., & Azuara-Domínguez, A. (2018). Occurrence of Metarhizium rileyi (Farlow) Kepler, SA Rehner & Humber in Anticarsia gemmatalis Hübner (Lepidoptera: Erebidae) and Trichoplusia ni Hübner (Lepidoptera: Noctuidae) larvae in Tamaulipas and Veracruz, Mexico. Florida Entomologist, 101(3), 517–518.

    Article  Google Scholar 

  • Joshi, R. S., Gupta, V. S., & Giri, A. P. (2014). Differential antibiosis against Helicoverpa armigera exerted by distinct inhibitory repeat domains of Capsicum annuum proteinase inhibitors. Phytochem, 101, 16–22.

    Article  CAS  Google Scholar 

  • Kakade ML, Rackis JJ, McGhee JE, Puski G (1974) Determination of trypsin inhibitor activity of soy products: A collaborative analysis of an improved procedure.

  • Karban, R. (2020). The ecology and evolution of induced responses to herbivory and how plants perceive risk. Ecological Entomology, 45(1), 1–9.

    Article  Google Scholar 

  • Kotapati, K. V., Palaka, B. K., & Ampasala, D. R. (2017). Alleviation of nickel toxicity in finger millet (Eleusine coracana L.) germinating seedlings by exogenous application of salicylic acid and nitric oxide. The Crop Journal, 5(3), 240–250.

    Article  Google Scholar 

  • Lee, S., Ishiga, Y., Clermont, K., & Mysore, K. S. (2013). Coronatine inhibits stomatal closure and delays hypersensitive response cell death induced by nonhost bacterial pathogens. PeerJ, 1, e34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lim, C. W., Han, S. W., Hwang, I. S., Kim, D. S., Hwang, B. K., & Lee, S. C. (2015). The pepper lipoxygenase CaLOX1 plays a role in osmotic, drought and high salinity stress response. Plant & Cell Physiology, 56(5), 930–942.

    Article  CAS  Google Scholar 

  • Lima, L. L., Balbi, B. P., Mesquita, R. O., Silva, J. C. F., Coutinho, F. S., Carmo, F. M. S., Vital, C. E., Mehta, A., Fontes, E. P. B., Barros, E. G., & Ramos, H. J. O. (2019). Proteomic and Metabolomic analysis of a drought tolerant soybean genotype from Brazilian savanna. Crop Breeding, Genetics and Genomics, 1, 22–32.

    Google Scholar 

  • Mendonça, E. G., de Almeida, B. R., Cordeiro, G., da Silva, C. R., Campos, W. G., de Oliveira, J. A., & de Almeida Oliveira, M. G. (2020). Larval development and proteolytic activity of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae) exposed to different soybean protease inhibitors. Archives of Insect Biochemistry and Physiology, 103(1), e21637.

    Article  PubMed  CAS  Google Scholar 

  • Meriño-Cabrera, Y., de Oliveira Mendes, T. A., Macedo, M. L. R., & de Almeida Oliveira, M. G. (2019). Inhibition of digestive trypsins by plant Kunitz proteins reduces the viability of Spodoptera cosmioides larvae. The Annals of Applied Biology, 175(3), 336–349.

    Article  CAS  Google Scholar 

  • Mitra, S., & Baldwin, I. T. (2008). Independently silencing two photosynthetic proteins in Nicotiana attenuata has different effects on herbivore resistance. Plant Physiology, 148(2), 1128–1138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nauen R, Steinbach D (2016) Resistance to diamide insecticides in lepidopteran pests. In Advances in insect control and resistance management (pp. 219-240). Springer, Cham.

  • Neto, M., da Costa, F., Zanuncio, J. C., Picanço, M. C., & Cruz, I. (2002). Reproductive characteristics of the predator Podisus nigrispinus fed with an insect resistant soybean variety. PAB, 37(7), 917–924.

    Google Scholar 

  • Nguyen, D., D'Agostino, N., Tytgat TO, Sun, P., Lortzing, T., Visser, E. J., et al. (2016). Drought and flooding have distinct effects on herbivore-induced responses and resistance in Solanum dulcamara. Plant, Cell & Environment, 39(7), 1485–1499.

    Article  CAS  Google Scholar 

  • Ohta, H., Ida, S., Mikami, B., & Morita, Y. (1986). Changes in lipoxygenase components of rice seedlings during germination. Plant & Cell Physiology, 27(5), 911–918.

    Article  CAS  Google Scholar 

  • Oliveira, M. G. A., De Simone, S. G., Xavier, L., & Guedes, R. N. C. (2005). Partial purification and characterization of digestive trypsin-like proteases from the velvet bean caterpillar, Anticarsia gemmatalis. Comp Biochem Phys B, 140(3), 369–380.

    Article  CAS  Google Scholar 

  • Paixão, G. P., Lourenção, A. L., Silva, C. R., Mendonça, E. G., Silva, P. L., Oliveira, J. A., Zanuncio, J. C., & Oliveira, M. G. A. (2013). Biochemical responses of Anticarsia gemmatalis (Lepidoptera: Noctuidae) in soybean cultivars sprayed with the protease inhibitor berenil. Journal of Agricultural and Food Chemistry, 61(34), 8034–8038.

    Article  PubMed  CAS  Google Scholar 

  • Preeti, A., Shaifali, S., Kumar, P. G., & Mani, P. D. (2019). Computational characterization of lipoxygenase and hydroperoxide lyase enzymes and real time PCR-based expression analysis of their encoding genes in peanut under heat and drought stress. Res J Biotechnol, 14, 12.

    Google Scholar 

  • Richardson, E. B., Troczka, B. J., Gutbrod, O., Davies, T. E., & Nauen, R. (2020). Diamide resistance: 10 years of lessons from lepidopteran pests. Journal of Pest Science, 93, 911–928.

    Article  Google Scholar 

  • Roach, T., Colville, L., Beckett, R. P., Minibayeva, F. V., Havaux, M., & Kranner, I. (2015). A proposed interplay between peroxidase, amine oxidase and lipoxygenase in the wounding-induced oxidative burst in Pisum sativum seedlings. Phytochem, 112, 130–138.

    Article  CAS  Google Scholar 

  • Sabarwal, A., Kumar, K., & Singh, R. P. (2018). Hazardous effects of chemical pesticides on human health–cancer and other associated disorders. Envrionmental Toxicology and Pharmacology, 63, 103–114.

    Article  CAS  Google Scholar 

  • Showler, A. T., & Castro, B. A. (2010). Influence of drought stress on Mexican rice borer (Lepidoptera: Crambidae) oviposition preference in sugarcane. Crop Protection, 29(5), 415–421.

    Article  Google Scholar 

  • Singh, S., Singh, A., Kumar, S., Mittal, P., & Singh, I. K. (2020). Protease inhibitors: Recent advancement in its usage as a potential biocontrol agent for insect pest management. Insect Sci., 27(2), 186–201.

    Article  PubMed  Google Scholar 

  • Suárez-Vidal, E., Sampedro, L., Voltas, J., Serrano, L., Notivol, E., & Zas, R. (2019). Drought stress modifies early effective resistance and induced chemical defences of Aleppo pine against a chewing insect herbivore. Environmental and Experimental Botany, 162, 550–559.

    Article  CAS  Google Scholar 

  • Teixeira, N. C., Valim, J. O. S., Oliveira, M. G. A., & Campos, W. G. (2020). Combined effects of soil silicon and drought stress on host plant chemical and ultrastructural quality for leaf-chewing and sap-sucking insects. Journal of Agronomy and Crop Science, 206(2), 187–201.

    Article  CAS  Google Scholar 

  • Thakur M, Udayashankar AC (2019) Lipoxygenases and their function in plant innate mechanism. In Bioactive Molecules in Plant Defense (pp. 133-143). Springer, Cham.

  • Tomarelli, R. M., Charney, J., & Harding, M. L. (1949). The use of azoalbumin as a substrate in the colorimetric determination or peptic and tryptic activity. The Journal of Laboratory and Clinical Medicine, 34(3), 428–433.

    CAS  PubMed  Google Scholar 

  • Vaseva, I., Sabotič, J., Šuštar-Vozlič, J., Meglič, V., Kidrič, M., Demirevska, K., & Simova-Stoilova, L. (2012). The response of plants to drought stress: The role of dehydrins, chaperones, proteases and protease inhibitors in maintaining cellular protein function. Droughts: new research, 1–45.

  • Vital, C. E., Giordano, A., de Almeida, S. E., Williams, T. C. R., Mesquita, R. O., Vidigal, P. M. P., et al. (2017). An integrative overview of the molecular and physiological responses of sugarcane under drought conditions. Plant Molecular Biology, 94(6), 577–594.

    Article  CAS  PubMed  Google Scholar 

  • Vos IA, Verhage A, Watt LG, Vlaardingerbroek I, Schuurink RC, Pieterse CM, Van Wees SC (2019) Abscisic acid is essential for rewiring of jasmonic acid-dependent defenses during herbivory. bioRxiv preprint.

  • War, A. R., Paulraj, M. G., Hussain, B., Buhroo, A. A., Ignacimuthu, S., & Sharma, H. C. (2013). Effect of plant secondary metabolites on legume pod borer, Helicoverpa armigera. Journal of Pest Science, 86(3), 399–408.

    Article  Google Scholar 

  • Weldegergis, B. T., Zhu, F., Poelman, E. H., & Dicke, M. (2015). Drought stress affects plant metabolites and herbivore preference but not host location by its parasitoids. Oecologia, 177(3), 701–713.

    Article  PubMed  Google Scholar 

  • Xiaoming Z, Qiong L (2018) A brief introduction of Main diseases and insect pests in soybean production in the global top five soybean producing countries. Plant Diseases & Pests 9(1).

  • Xie H, Shi J, Shi F, Wang X, Xu H, He K, Wang Z (2020) Aphid fecundity and defenses in wheat exposed to a combination of heat and drought stress. J Exp bot Eraa017.

  • Zanuncio, J. C., Mabio, C. L., Junior, J. S. Z., Zanuncio, T. V., Silva, A. M. C., & Curitiba, M. E. (2004). Fertility table and rate of population growth of the predator Supputius cincticeps (Heteroptera: Pentatomidae) on one plant of Eucalyptus cloeziana in the field. The Annals of Applied Biology, 144(3), 357–361.

    Article  Google Scholar 

  • Zhao, A., Li, Y., Leng, C., Wang, P., & Li, Y. (2019). Inhibitory effect of protease inhibitors on larval midgut protease activities and the performance of Plutella xylostella (Lepidoptera: Plutellidae). Frontiers in Physiology, 9, 1963.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was funded by the “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)”, “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)”, “Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)” and “Instituto Nacional de Ciência e Tecnologia em Interações Planta-Praga (INCT-IPP)”. We thank Drs. Ricardo Alcántara-de la Cruz and Wellington Souto Ribeiro for their insightful comments. Authors declare to have not conflict of interests.

Author information

Authors and Affiliations

Authors

Contributions

Maria Goreti de Almeida Oliveira and Humberto Josué de Oliveira Ramos conceived research. Verônica Aparecida Faustino, Felipe Lopes da Silva and Samuel Lessa Barbosa conducted experiments. Verônica Aparecida Faustino, Camilo Elber Vital and Rafael de Almeida Barros analyzed data and conducted statistical analyzes. Verônica Aparecida Faustino, Camilo Elber Vital, Rafael de Almeida Barros and Neilier Rodrigues da Silva Júnior wrote the manuscript. Maria Goreti de Almeida Oliveira secured funding. All authors read and approved the manuscript.

Corresponding author

Correspondence to Humberto Josué de Oliveira Ramos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faustino, V.A., de Almeida Barros, R., da Silva Júnior, N.R. et al. Soybean drought-stressed plants impair Anticarsia gemmatalis (Lepidoptera: Erebidae) midgut proteolytic activity and survival. Phytoparasitica 49, 491–500 (2021). https://doi.org/10.1007/s12600-020-00873-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-020-00873-w

Keywords

Navigation