Skip to main content

Advertisement

Log in

Anti-Proliferative and Anti-Biofilm Potentials of Bacteriocins Produced by Non-Pathogenic Enterococcus sp.

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The incidence of cancer is increasing worldwide; likewise, the emergence of antibiotic-resistant biofilm-forming pathogens has led to a tremendous increase in morbidity and mortality. This study aimed to evaluate the probiotic properties of bacteriocin-producing Enterococcus sp. with a focus on their anti-biofilm and anticancer activities. Three of 79 Enterococcus isolates (FM43, FM65, FM50) were identified as producers of broad-spectrum bioactive molecules and were molecularly characterized as Enterococcus faecium by 16S rRNA sequencing. Phenotypic and genotypic screening for potential virulence factors revealed no factors known to promote pathogenicity. Treatment with proteinase K resulted in diminished antimicrobial activity; PCR-based screening for bacteriocin genes suggested the presence of both entA and entB genes that encode enterocins A and B, respectively. Maximum antimicrobial activity was detected during the early stationary phase, while activity disappeared after 24 h in culture. Bacteriocins from these isolates were stable at high temperatures and over a wide range of pH. Interestingly, crude supernatants of Ent. faecium FM43 and Ent. faecium FM50 resulted in significant destruction (80% and 48%, respectively; P < 0.05) of Streptococcus mutans ATCC 25175–associated preformed biofilms. Moreover, in vitro cytotoxicity assays revealed that extracts from Ent. faecium isolates FM43, FM65, and FM50 inhibited Caco-2 cell proliferation by 76.9%, 70%, and 85.3%, respectively. Taken together, the multifunctional capabilities of the microbial-derived proteins identified in our study suggest potentially important roles as alternative treatments for biofilm-associated infections and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Leavis HL, Bonten MJ, Willems RJ (2006) Identification of high-risk enterococcal clonal complexes: global dispersion and antibiotic resistance. Curr Opin Microbiol 9:454–460. https://doi.org/10.1016/j.mib.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  2. Franz CMAP, Huch M, Abriouel H, Holzapfel W, Gálvez A (2011) Enterococci as probiotics and their implications in food safety. Int J Food Microbiol 151:125–140. https://doi.org/10.1016/j.ijfoodmicro.2011.08.014

    Article  CAS  PubMed  Google Scholar 

  3. Arias CA, Murray BE (2012) The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol 10:266–278. https://doi.org/10.1038/nrmicro2761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang F, Qiu L, Xu X, Liu Z, Zhan H, Tao X, Shah NP, Wei H (2017) Beneficial effects of probiotic cholesterol-lowering strain of Enterococcus faecium WEFA23 from infants on diet-induced metabolic syndrome in rats. J Dairy Sci 100:1618–1628. https://doi.org/10.3168/jds.2016-11870

    Article  CAS  PubMed  Google Scholar 

  5. Ben Braïek O, Smaoui S (2019) Enterococci: between emerging pathogens and potential probiotics. Biomed Res Int 2019:5938210–5938213. https://doi.org/10.1155/2019/5938210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fahim HA, Khairalla AS, El-Gendy AO (2016) Nanotechnology: a valuable strategy to improve bacteriocin formulations. Front Microbiol 7:1385. https://doi.org/10.3389/fmicb.2016.01385

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pisoschi AM, Pop A, Georgescu C, Turcuş V, Olah NK, Mathe E (2018) An overview of natural antimicrobials role in food. Eur J Med Chem 143:922–935. https://doi.org/10.1016/j.ejmech.2017.11.095

    Article  CAS  PubMed  Google Scholar 

  8. Javed A, Masud T, Ul Ain Q et al (2011) Enterocins of Enterococcus faecium, emerging natural food preservatives. Ann Microbiol 61:699–708. https://doi.org/10.1007/s13213-011-0223-8

    Article  Google Scholar 

  9. García de Fernando G (2011) Lactic acid bacteria: Enterococcus in milk and dairy products. Encycl Dairy Sci Second Ed 153–159. https://doi.org/10.1016/B978-0-12-374407-4.00528-8

  10. Ness IF, Diep DB, Ike Y (2014) Enterococcal bacteriocins and antimicrobial proteins that contribute to niche control. In: Gilmore MS, Clewell DB, Ike Y, Shankar N (eds) Enterococci: from commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, Boston, MA

    Google Scholar 

  11. Klein G (2003) Taxonomy, ecology and antibiotic resistance of enterococci from food and the gastro-intestinal tract. Int J Food Microbiol 88:123–131. https://doi.org/10.1016/S0168-1605(03)00175-2

    Article  PubMed  Google Scholar 

  12. Takahashi N, Nyvad B (2008) Caries ecology revisited: microbial dynamics and the caries process. Caries Res 42:409–418. https://doi.org/10.1159/000159604

    Article  CAS  Google Scholar 

  13. Ben Taheur F, Kouidhi B, Fdhila K, Elabed H, Ben Slama R, Mahdouani K, Bakhrouf A, Chaieb K (2016) Anti-bacterial and anti-biofilm activity of probiotic bacteria against oral pathogens. Microb Pathog 97:213–220. https://doi.org/10.1016/j.micpath.2016.06.018

    Article  CAS  PubMed  Google Scholar 

  14. Abranches J, Miller JH, Martinez AR, Simpson-Haidaris PJ, Burne RA, Lemos JA (2011) The collagen-binding protein Cnm is required for Streptococcus mutans adherence to and intracellular invasion of human coronary artery endothelial cells. Infect Immun 79:2277–2284. https://doi.org/10.1128/IAI.00767-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Høiby N, Ciofu O, Johansen HK, Song ZJ, Moser C, Jensen PØ, Molin S, Givskov M, Tolker-Nielsen T, Bjarnsholt T (2011) The clinical impact of bacterial biofilms. Int J Oral Sci 3:55–65. https://doi.org/10.4248/IJOS11026

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kaplan JB (2010) Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res 89:205–218. https://doi.org/10.1177/0022034509359403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chhibber S, Nag D, Bansal S (2013) Inhibiting biofilm formation by Klebsiella pneumoniae B5055 using an iron antagonizing molecule and a bacteriophage. BMC Microbiol 13:174. https://doi.org/10.1186/1471-2180-13-174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kumar A, Karig D, Acharya R, Neethirajan S, Mukherjee PP, Retterer S, Doktycz MJ (2013) Microscale confinement features can affect biofilm formation. Microfluid Nanofluidics 14:895–902. https://doi.org/10.1007/s10404-012-1120-6

    Article  Google Scholar 

  19. Cotter PD, Ross RP, Hill C (2013) Bacteriocins-a viable alternative to antibiotics? Nat Rev Microbiol 11:95–105. https://doi.org/10.1038/nrmicro2937

    Article  CAS  PubMed  Google Scholar 

  20. Kaur S, Kaur S (2015) Bacteriocins as potential anticancer agents. Front Pharmacol 6:272. https://doi.org/10.3389/fphar.2015.00272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gaspar D, Salomé Veiga A, Castanho MARB (2013) From antimicrobial to anticancer peptides. A review Front Microbiol 4:294. https://doi.org/10.3389/fmicb.2013.00294

    Article  PubMed  Google Scholar 

  22. Zhao H, Sood R, Jutila A, Bose S, Fimland G, Nissen-Meyer J, Kinnunen PKJ (2006) Interaction of the antimicrobial peptide pheromone Plantaricin A with model membranes: implications for a novel mechanism of action. Biochim Biophys Acta Biomembr 1758:1461–1474. https://doi.org/10.1016/j.bbamem.2006.03.037

    Article  CAS  Google Scholar 

  23. Dundar H, Brede DA, La Rosa SL et al (2015) The fsr quorum-sensing system and cognate gelatinase orchestrate the expression and processing of proprotein EF_1097 into the mature antimicrobial peptide enterocin O16. J Bacteriol 197:2112–2121. https://doi.org/10.1128/JB.02513-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ahmad MS, El-Gendy AO, Ahmed RR et al (2017) Exploring the antimicrobial and antitumor potentials of Streptomyces sp. AGM12-1 isolated from Egyptian soil. Front Microbiol 8:438. https://doi.org/10.3389/fmicb.2017.00438

    Article  PubMed  PubMed Central  Google Scholar 

  25. El-Ghaish S, El-Baz A, Hwanhlem N et al (2015) Bacteriocin production and safety evaluation of non-starter Enterococcus faecium IM1 and Enterococcus hirae IM1 strains isolated from homemade Egyptian dairy products. Eur Food Res Technol 240:1211–1223. https://doi.org/10.1007/s00217-015-2424-z

    Article  CAS  Google Scholar 

  26. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  29. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035. https://doi.org/10.1073/pnas.0404206101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vankerckhoven V, Van Autgaerden T, Vael C et al (2004) Development of a multiplex PCR for the detection of asaI, gelE, cylA, esp, and hyl genes in enterococci and survey for virulence determinants among European hospital isolates of Enterococcus faecium. J Clin Microbiol 42:4473–4479. https://doi.org/10.1128/JCM.42.10.4473-4479.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Martín-Platero AM, Valdivia E, Maqueda M, Martínez-Bueno M (2009) Characterization and safety evaluation of enterococci isolated from Spanish goats’ milk cheeses. Int J Food Microbiol 132:24–32. https://doi.org/10.1016/j.ijfoodmicro.2009.03.010

    Article  CAS  PubMed  Google Scholar 

  32. Tomita H, Fujimoto S, Tanimoto K, Ike Y (1997) Cloning and genetic and sequence analyses of the bacteriocin 21 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pPD1. J Bacteriol 179:7843–7855. https://doi.org/10.1128/jb.179.24.7843-7855.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aymerich T, Holo H, Håvarstein LS, Hugas M, Garriga M, Nes IF (1996) Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl Environ Microbiol 62:1676–1682. https://doi.org/10.1128/aem.62.5.1676-1682.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nilsen T, Nes IF, Holo H (2003) Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl Environ Microbiol 69:2975–2984. https://doi.org/10.1128/AEM.69.5.2975-2984.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gilmore MS, Segarra RA, Booth MC, Bogie CP, Hall LR, Clewell DB (1994) Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to lantibiotic determinants. J Bacteriol 176:7335–7344. https://doi.org/10.1128/jb.176.23.7335-7344.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cintas LM, Casaus P, Holo H, Hernandez PE, Nes IF, Håvarstein LS (1998) Enterocins L50A and L50B, two novel bacteriocins from Enterococcus faecium L50, are related to staphylococcal hemolysins. J Bacteriol 180:1988–1994. https://doi.org/10.1128/jb.180.8.1988-1994.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cintas LM, Casaus P, Håvarstein LS, Hernández PE, Nes IF (1997) Biochemical and genetic characterization of enterocin P, a novel sec- dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol 63:4321–4330. https://doi.org/10.1128/aem.63.11.4321-4330.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Birri DJ, Brede DA, Tessema GT, Nes IF (2013) Bacteriocin production, antibiotic susceptibility and prevalence of haemolytic and gelatinase activity in faecal lactic acid bacteria isolated from healthy Ethiopian infants. Microb Ecol 65:504–516. https://doi.org/10.1007/s00248-012-0134-7

    Article  CAS  PubMed  Google Scholar 

  39. Harrigan WF, McCance ME (1966) Laboratory methods in microbiology. Academic Press, USA

    Google Scholar 

  40. Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555. https://doi.org/10.1016/j.mimet.2003.08.009

    Article  CAS  PubMed  Google Scholar 

  41. Clsi (2013) Performance standards for antimicrobial susceptibility testing. Institute, Clinical and Laboratory Standards

    Google Scholar 

  42. Khodaei M, Sh SN (2018) Isolation and molecular identification of bacteriocin-producing enterococci with broad antibacterial activity from traditional dairy products in Kerman province of Iran. Korean J Food Sci Anim Resour 38:172–179. https://doi.org/10.5851/kosfa.2018.38.1.172

    Article  Google Scholar 

  43. Wang Y, Qin Y, Xie Q, Zhang Y, Hu J, Li P (2018) Purification and characterization of plantaricin LPL-1, a novel class IIa bacteriocin produced by Lactobacillus plantarum LPL-1 isolated from fermented fish. Front Microbiol 9:2276. https://doi.org/10.3389/fmicb.2018.02276

    Article  PubMed  PubMed Central  Google Scholar 

  44. Feliatra F, Muchlisin ZA, Teruna HY, et al (2018) Potential of bacteriocins produced by probiotic bacteria isolated from tiger shrimp and prawns as antibacterial to vibrio, pseudomonas, and aeromonas species on fish. F1000Research 7:. https://doi.org/10.12688/F1000RESEARCH.13958.1

  45. Merritt JH, Kadouri DE, O’Toole GA (2005) Growing and analyzing static biofilms. Curr Protoc Microbiol https://doi.org/10.1002/9780471729259.mc01b01s00

  46. Kadouri D, Venzon NC, O’Toole GA (2007) Vulnerability of pathogenic biofilms to Micavibrio aeruginosavorus. Appl Environ Microbiol 73:605–614. https://doi.org/10.1128/AEM.01893-06

    Article  CAS  PubMed  Google Scholar 

  47. Vahedi Shahandashti R, Kasra Kermanshahi R, Ghadam P (2016) The inhibitory effect of bacteriocin produced by Lactobacillus acidophilus ATCC 4356 and Lactobacillus plantarum ATCC 8014 on planktonic cells and biofilms of Serratia marcescens. Turkish J Med Sci 46:1188–1196. https://doi.org/10.3906/sag-1505-51

    Article  CAS  Google Scholar 

  48. Sambrook J, Russel DW (2001) Molecular cloning: A laboratory manual. Cold spring harbor 3 2100

  49. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112. https://doi.org/10.1093/jnci/82.13.1107

    Article  CAS  PubMed  Google Scholar 

  50. Valiyari S, Baradaran B, Delazar A, Pasdaran A, Zare F (2012) Dichloromethane and methanol extracts of Scrophularia oxysepala induces apoptosis in MCF-7 human breast cancer cells. Adv Pharm Bull 2:223–231. https://doi.org/10.5681/apb.2012.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution (N Y) 39:783–791. https://doi.org/10.2307/2408678

    Article  Google Scholar 

  52. Ben Braïek O, Ghomrassi H, Cremonesi P, Morandi S, Fleury Y, le Chevalier P, Hani K, Bel Hadj O, Ghrairi T (2017) Isolation and characterisation of an enterocin P-producing Enterococcus lactis strain from a fresh shrimp (Penaeus vannamei). Antonie van Leeuwenhoek. Int J Gen Mol Microbiol 110:771–786. https://doi.org/10.1007/s10482-017-0847-1

    Article  CAS  Google Scholar 

  53. Izquierdo E, Marchioni E, Aoude-Werner D et al (2009) Smearing of soft cheese with Enterococcus faecium WHE 81, a multi-bacteriocin producer, against Listeria monocytogenes. Food Microbiol 26:16–20. https://doi.org/10.1016/j.fm.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  54. Khan H, Flint S, Yu PL (2010) Enterocins in food preservation. Int J Food Microbiol 141:1–10. https://doi.org/10.1016/j.ijfoodmicro.2010.03.005

    Article  CAS  PubMed  Google Scholar 

  55. Chuard C, Reller LB (1998) Bile-esculin test for presumptive identification of enterococci and streptococci: effects of bile concentration, inoculation technique, and incubation time. J Clin Microbiol 36:1135–1136. https://doi.org/10.1128/jcm.36.4.1135-1136.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kang JH, Lee MS (2005) Characterization of a bacteriocin produced by Enterococcus faecium GM-1 isolated from an infant. J Appl Microbiol 98:1169–1176. https://doi.org/10.1111/j.1365-2672.2005.02556.x

    Article  CAS  PubMed  Google Scholar 

  57. Du Toit M, Franz CMAP, Dicks LMT, Holzapfel WH (2000) Preliminary characterization of bacteriocins produced by Enterococcus faecium and Enterococcus faecalis isolated from pig faeces. J Appl Microbiol 88:482–494. https://doi.org/10.1046/j.1365-2672.2000.00986.x

    Article  PubMed  Google Scholar 

  58. Morandi S, Silvetti T, Brasca M (2013) Biotechnological and safety characterization of Enterococcus lactis, a recently described species of dairy origin. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 103:239–249. https://doi.org/10.1007/s10482-012-9806-z

    Article  CAS  Google Scholar 

  59. FAO/WHO (2002) Guidelines for evaluation of probiotic in food. Rep Jt FAO/WHO Work Gr Draft Guidel Eval Probiotic Food

  60. Parte AC (2018) LPSN - list of prokaryotic names with standing in nomenclature (Bacterio.net), 20 years on. Int J Syst Evol Microbiol 68:1825–1829. https://doi.org/10.1099/ijsem.0.002786

    Article  PubMed  Google Scholar 

  61. Bagci U, Ozmen Togay S, Temiz A, Ay M (2019) Probiotic characteristics of bacteriocin-producing Enterococcus faecium strains isolated from human milk and colostrum. Folia Microbiol (Praha) 64:735–750. https://doi.org/10.1007/s12223-019-00687-2

    Article  CAS  Google Scholar 

  62. Phumisantiphong U, Siripanichgon K, Reamtong O, Diraphat P (2017) A novel bacteriocin from Enterococcus faecalis 478 exhibits a potent activity against vancomycin-resistant enterococci. PLoS One 12:e0186415. https://doi.org/10.1371/journal.pone.0186415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Abanoz HS, Kunduhoglu B (2018) Antimicrobial activity of a bacteriocin produced by Enterococcus faecalis kt11 against some pathogens and antibiotic-resistant bacteria. Korean J Food Sci Anim Resour 38:1064–1079. https://doi.org/10.5851/kosfa.2018.e40

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lozo J, Vukasinovic M, Strahinic I, Topisirovic L (2004) Characterization and antimicrobial activity of bacteriocin 217 produced by natural isolate Lactobacillus paracasei subsp. paracasei BGBUK2-16. J Food Prot 67:2727–2734. https://doi.org/10.4315/0362-028X-67.12.2727

    Article  CAS  PubMed  Google Scholar 

  65. Taheri P, Samadi N, Reza Ehsani M et al (2012) An evaluation and partial characterization of a bacteriocin produced by Lactococcus lactis subsp lactis ST1 isolated from goat milk. Braz J Microbiol 43:1452–1462. https://doi.org/10.1590/S1517-83822012000400029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zamfir M, Stefan IR, Stancu MM, Grosu-Tudor SS (2016) Production, mode of action and sequencing of the corresponding gene of a bacteriocin produced by Lactococcus lactis 19.3. Int J Food Sci Technol 51:2164–2170. https://doi.org/10.1111/ijfs.13196

    Article  CAS  Google Scholar 

  67. Harro JM, Peters BM, O’May GA et al (2010) Vaccine development in Staphylococcus aureus: taking the biofilm phenotype into consideration. FEMS Immunol Med Microbiol 59:306–323. https://doi.org/10.1111/j.1574-695X.2010.00708.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mathur H, Field D, Rea MC, et al (2018) Fighting biofilms with lantibiotics and other groups of bacteriocins. npj Biofilms Microbiomes 4:1-13. https://doi.org/10.1038/s41522-018-0053-6

  69. Suzuki N, Yoneda M, Hatano Y, Iwamoto T, Masuo Y, Hirofuji T (2011) Enterococcus faecium WB2000 inhibits biofilm formation by oral cariogenic streptococci. Int J Dent 2011:1–5. https://doi.org/10.1155/2011/834151

    Article  CAS  Google Scholar 

  70. Ennahar S, Asou Y, Zendo T, Sonomoto K, Ishizaki A (2001) Biochemical and genetic evidence for production of enterocins A and B by Enterococcus faecium WHE 81. Int J Food Microbiol 70:291–301. https://doi.org/10.1016/S0168-1605(01)00565-7

    Article  CAS  PubMed  Google Scholar 

  71. Sonsa-Ard N, Rodtong S, Chikindas ML, Yongsawatdigul J (2015) Characterization of bacteriocin produced by Enterococcus faecium CN-25 isolated from traditionally Thai fermented fish roe. Food Control 54:308–316. https://doi.org/10.1016/j.foodcont.2015.02.010

    Article  CAS  Google Scholar 

  72. Mojsova S, Krstevski K, Dzadzovski I et al (2015) Phenotypic and genotypic characteristics of enterocin producing enterococci against pathogenic bacteria. Maced Vet Rev 38:209–216. https://doi.org/10.14432/j.macvetrev.2015.08.052

    Article  CAS  Google Scholar 

  73. Huang Y, Ye K, Yu K, Wang K, Zhou G (2016) The potential influence of two Enterococcus faecium on the growth of Listeria monocytogenes. Food Control 67:18–24. https://doi.org/10.1016/j.foodcont.2016.02.009

    Article  CAS  Google Scholar 

  74. Ibarguren C, Raya RR, Apella MC, Audisio MC (2010) Enterococcus faecium isolated from honey synthesized bacteriocin-like substances active against different Listeria monocytogenes strains. J Microbiol 48:44–52. https://doi.org/10.1007/s12275-009-0177-8

    Article  CAS  PubMed  Google Scholar 

  75. Wang SM, Zhang LW, Fan RB, Han X, Yi HX, Zhang LL, Xue CH, Li HB, Zhang YH, Shigwedha N (2014) Induction of HT-29cells apoptosis by lactobacilli isolated from fermented products. Res Microbiol 165:202–214. https://doi.org/10.1016/j.resmic.2014.02.004

    Article  CAS  PubMed  Google Scholar 

  76. Ankaiah D, Esakkiraj P, Perumal V, Ayyanna R, Venkatesan A (2017) Probiotic characterization of Enterococcus faecium por1: cloning, over expression of enterocin-A and evaluation of antibacterial, anti-cancer properties. J Funct Foods 38:280–292. https://doi.org/10.1016/j.jff.2017.09.034

    Article  CAS  Google Scholar 

  77. Al-Fakharany OM, Aziz AAA, El-Banna TE-S, Sonbol FI (2018) Immunomodulatory and anticancer activities of enterocin Oe-342 produced by Enterococcus feacalis isolated from stool. J Clin Cell Immunol 9:558. https://doi.org/10.4172/2155-9899.1000558

    Article  Google Scholar 

  78. Er S, Koparal AT, Kivanç M (2015) Cytotoxic effects of various lactic acid bacteria on Caco-2 cells. Turkish J Biol 39:23–30. https://doi.org/10.3906/biy-1402-62

    Article  CAS  Google Scholar 

  79. Paiva AD, Breukink E, Mantovani HC (2011) Role of lipid II and membrane thickness in the mechanism of action of the lantibiotic bovicin HC5. Antimicrob Agents Chemother 55:5284–5293. https://doi.org/10.1128/AAC.00638-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Economou V, Sakkas H, Delis G, Gousia P (2017) Antibiotic resistance in Enterococcus spp. friend or foe? Foodborne Pathog Antibiot Resist 365–395. https://doi.org/10.1002/9781119139188.ch16

  81. Olvera-García M, Sanchez-Flores A, Quirasco Baruch M (2018) Genomic and functional characterisation of two Enterococcus strains isolated from Cotija cheese and their potential role in ripening. Appl Microbiol Biotechnol 102:2251–2267. https://doi.org/10.1007/s00253-018-8765-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are so grateful to Dr. Tarek Dishisha and Dr. Mohamed Sebak for their kind help, suggestions, and recommendation during the current study.

Author information

Authors and Affiliations

Authors

Contributions

A.O.E. and A.S.K. designed all preliminary experiments. A.O.E. and A.F.A. revised the microbiology experiment design and organized and analyzed the data. F.M., A.O.E., and A.F.A. performed all the study experiments and interpreted the project results. F.M. wrote the initial draft of the manuscript. A.O.E., A.S.K., A.F.A., and E.A.G revised the manuscript, and S.M.A. did final revision of the manuscript prior to its submission.

Corresponding authors

Correspondence to Ahmed F. Azmy or Ahmed O. El-Gendy.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molham, F., Khairalla, A.S., Azmy, A.F. et al. Anti-Proliferative and Anti-Biofilm Potentials of Bacteriocins Produced by Non-Pathogenic Enterococcus sp.. Probiotics & Antimicro. Prot. 13, 571–585 (2021). https://doi.org/10.1007/s12602-020-09711-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09711-1

Keywords

Navigation