Skip to main content
Log in

Effect of SiO2 addition on the microstructure and electrical properties of ZnO-based varistors

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The microstructure and electrical properties of ZnO-based varistors with the SiO2 content in the range of 0–1.00mol% were prepared by a solid reaction route. The varistors were characterized by scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectrometry, inductively coupled plasma-atomic emission spectrometry, and X-ray photoelectron spectroscopy. The results indicate that the average grain size of ZnO decreases with the SiO2 content increasing. A new second phase (Zn2SiO4) and a glass phase (Bi2SiO5) are found. Element Si mainly exists in the grain boundary and plays an important role in controlling the Bi2O3 vaporization. The electric measurement shows that the incorporation of SiO2 can significantly improve the nonlinear properties of ZnO-based varistors, and the nonlinear coefficients of the varistors with SiO2 are in the range of 36.8–69.5. The varistor voltage reaches the maximum value of 463 V/mm and the leakage current reaches the minimum value of 0.11 μA at the SiO2 content of 0.75mol%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.R. Clarke, Varistor ceramics, J. Am. Ceram. Soc., 82(1999), p.485.

    CAS  Google Scholar 

  2. D. Xu, L. Shi, Z. Wu, et al., Microstructure and electrical properties of ZnO-Bi2O3-based varistor ceramics by different sintering processes, J. Eur. Ceram. Soc., 29(2009), p.1789.

    Article  CAS  Google Scholar 

  3. M. Matsuoka, Nonohmic properties of zinc oxide ceramics, Jpn. J. Appl. Phys., 10(1971), p.736.

    Article  CAS  ADS  Google Scholar 

  4. T.K. Gupta, Applications of zinc oxide ceramics, J. Am. Ceram. Soc., 73(1990), p.1817.

    Article  CAS  Google Scholar 

  5. T. Takemura, M. Kobayashi, Y. Takada, and K. Sato, Effects of antimony oxide on the characteristics of ZnO varistors, J. Am. Ceram. Soc., 70(1987), p.237.

    Article  CAS  Google Scholar 

  6. E. Olsson and G.L. Dunlop, The effect of Bi2O3 content on the microstructure and electrical properties of ZnO varistor materials, J. Appl. Phys., 66(1989), p.4317.

    Article  CAS  ADS  Google Scholar 

  7. M. Peiteado, M.A. De, M.J. Velasco, et al., Bi2O3 vaporization from ZnO-based varistors, J. Eur. Ceram. Soc., 25(2005), p.675.

    Google Scholar 

  8. C.C. Lin, W.S. Lee, C.C. Sun, and W.H. Whu, The influences of bismuth antimony additives and cobalt manganese dopants on the electrical properties of ZnO-based varistors, Compos. Part B, 38(2007), p.338.

    Article  CAS  Google Scholar 

  9. S.G. Cho, H. Lee, and H.S. Kim, Effect of chromium on the phase evolution and microstructure of ZnO doped with bismuth and antimony, J. Mater. Sci., 32(1997), p.4283.

    Article  CAS  Google Scholar 

  10. K.O. Magnusson and S. Wiklund, Interface formation of Bi on ceramic ZnO: a simple model varistor grain boundary, J. Appl. Phys., 76(1994), p.7405.

    Article  CAS  ADS  Google Scholar 

  11. S. Bernik and N. Daneu, Characteristics of ZnO-based varistor ceramics doped with Al2O3, J. Eur. Ceram. Soc., 27(2007), p.3161.

    Article  CAS  Google Scholar 

  12. J. Ott, A. Lorenz, M. Harrer, et al., The influence of Bi2O3 and Sb2O3 on the electrical properties of ZnO-based varistors, J. Electroceram., 6(2001), p.135.

    Article  CAS  Google Scholar 

  13. C. Lin, Z. Xu, P. Hu, and D.F. Sun, Bi2O3 vaporization in microwave-sintered ZnO varistors, J. Am. Ceram. Soc., 90(2007), p.2791.

    Article  CAS  Google Scholar 

  14. R. Einzinger, Metal oxide varistors, Ann. Rev. Mater. Sci., 17(1987), p.299.

    Article  CAS  ADS  Google Scholar 

  15. T.R.N. Kutty and S. Ezhilvalavan, The role of silica in enhancing the nonlinearity coefficients by modifying the trap states of zinc oxide ceramic varistors, J. Phys. D, 29(1996), p.809.

    Article  CAS  ADS  Google Scholar 

  16. S.J. So and C.B. Park, Improvement in the electrical stability of semiconducting ZnO ceramic varistors with SiO2 additive, J. Korean Phys. Soc., 40(2002), p.925.

    CAS  Google Scholar 

  17. C.W. Nahm, Effect of cooling rate on degradation characteristics of ZnO·Pr6O11·CoO·Cr2O3·Y2O3-based varistors, Solid State Commun., 132(2004), p.213.

    Article  CAS  ADS  Google Scholar 

  18. B.A. Haskell, S.J. Souri, and M.A. Helfand, Varistor behavior at twin boundaries in ZnO, J. Am. Ceram. Soc., 82(1999), p.2106.

    Article  CAS  Google Scholar 

  19. A. Rečnik, N. Daneu, T. Walther, and W. Mader, Structure and chemistry of basal-plane inversion boundaries in antimony oxide doped zinc oxide, J. Am. Ceram. Soc., 84(2001), p.2657.

    Article  Google Scholar 

  20. S. Bernik, N. Daneu, and A. Rečnik, Inversion boundary induced grain growth in TiO2 or Sb2O3 doped ZnO-based varistor ceramics, J. Eur. Ceram. Soc., 24(2004), p.3703.

    Article  CAS  Google Scholar 

  21. C.N. Ye, N.Y. Tang, X.M. Wu, et al., XPS analysis of Ge-SiO2 thin film, Microfabr. Technol. (in Chinese), 1(2002), p.36.

    Google Scholar 

  22. C.W. Nahm, The effect of sintering temperature on electrical properties and accelerated aging behavior of PCCL-doped ZnO varistors, Mater. Sci. Eng. B, 136(2007), p.134.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-hong Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Zh., Fang, Jh., Xu, D. et al. Effect of SiO2 addition on the microstructure and electrical properties of ZnO-based varistors. Int J Miner Metall Mater 17, 86–91 (2010). https://doi.org/10.1007/s12613-010-0115-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-010-0115-0

Keywords

Navigation