Skip to main content
Log in

Effects of small additions of Zn on the microstructure, mechanical properties and corrosion resistance of WE43B Mg alloys

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Zn is a commonly used alloying element for Mg alloys owing to its beneficial effects on mechanical properties. To improve the mechanical and corrosion properties of WE43B Mg alloys, the effects of 0–0.7wt% Zn addition on the microstructure and properties of sample alloys were investigated. Addition of Zn to as-cast WE43B alloy promoted the formation of the Mg12Nd phase; by contrast, after T6 heat treatment, the phase composition of WE43B alloys with and without Zn addition remained mostly the same. A long-period stacking ordered phase was predicted by CALPHAD calculation, but this phase was not observed in either the as-cast or heat-treated Zn-containing WE43B alloys. The optimum temperature and duration of T6 heat treatment were obtained using CALPHAD calculations and hardness measurements. Addition of Zn resulted in a slight reduction in the average grain size of the as-cast and T6 heat-treated WE43B alloys and endowed them with increased corrosion resistance with little effect on their mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.J. Polmear, Magnesium alloys and applications, Mater. Sci. Technol., 10(1994), No. 1, p. 1.

    Article  Google Scholar 

  2. B.L. Mordike and T. Ebert, Magnesium. Properties - applications - potential, Mater. Sci. Eng. A, 302(2001), No. 1, p. 37.

    Article  Google Scholar 

  3. I.J. Polmear, Light Alloys: From Traditional Alloys to Nanocrystals, Butterworth-Heinemann, Oxford, 2006, p. 241.

    Google Scholar 

  4. I.Y. Mukhina, V.M. Lebedev, K.H. Kim, and D.K. Kim, Investigation of the microstructure and properties of castable neodymium-and yttrium-bearing magnesium alloys at elevated temperatures, Met. Sci. Heat Treat., 39(1997), No. 5, p. 202.

    Article  Google Scholar 

  5. G. Sha, J.H. Li, W. Xu, K. Xia, W.Q. Jie, and S.P. Ringer, Hardening and microstructural reactions in high-temperature equal-channel angular pressed Mg-Nd-Gd-Zn-Zr alloy, Mater. Sci. Eng. A, 527(2010), No. 20, p. 5092.

    Article  Google Scholar 

  6. B.K. Park, J.H. Jun, and J.M. Kim, Influence of Zn addition on aging response and corrosion resistance of Mg-Gd-Nd-Zr alloy, Mater. Trans., 49(2008), No. 5, p. 931.

    Article  Google Scholar 

  7. S. Gavras, T. Subroto, R.H. Buzolin, N. Hort, and D. Tolnai, The role of Zn additions on the microstructure and mechanical properties of Mg-Nd-Zn alloys, Int. J. Metalcast., 12(2018), No. 3, p. 428.

    Article  Google Scholar 

  8. A. Luo and M.O. Pekguleryuz, Cast magnesium alloys for elevated temperature applications, J. Mater. Sci., 29(1994), No. 20, p. 5259.

    Article  Google Scholar 

  9. G.L. Bi, Y.D. Li, S.J. Zang, J.B. Zhang, Y. Ma, and Y. Hao, Microstructure, mechanical and corrosion properties of Mg-2Dy-xZn (x=0, 0.1, 0.5 and 1at.%) alloys, J. Magnesium Alloys, 2(2014), No. 1, p. 64.

    Article  Google Scholar 

  10. M. Suzuki, T. Kimura, J. Koike, and K. Maruyama, Effects of zinc on creep strength and deformation substructures in Mg-Y alloy, Mater. Sci. Eng. A, 387-389(2004), p. 706.

    Article  Google Scholar 

  11. Y.H. Kang, D. Wu, R.S. Chen, and E.H. Han, Microstructures and mechanical properties of the age hardened Mg-4.2Y-2.5Nd-1Gd-0.6Zr (WE43) microalloyed with Zn, J. Magnesium Alloys, 2(2014), No. 2, p. 109.

    Article  Google Scholar 

  12. M. Nishijima, K. Hiraga, M. Yamasaki, and Y. Kawamura, The structure of Guinier-Preston zones in an Mg-2at% Gd-1at% Zn alloy studied by transmission electron microscopy, Mater. Trans., 49(2008), No. 1, p. 227.

    Article  Google Scholar 

  13. J.H. Li, G. Sha, P. Schumacher, and S.P. Ringer, Precipitation process in Mg-Nd-Zn-Zr-Gd/Y alloy, [in] Proc. Symp. Magnesium Technology, San Diego, 2011, p. 255.

    Google Scholar 

  14. X.W. Yu, B. Jiang, J.J. He, B. Liu, Z.T. Jiang, and F.S. Pan, Effect of Zn addition on the oxidation property of Mg-Y alloy at high temperatures, J. Alloys Compd., 687(2016), p. 252.

    Article  Google Scholar 

  15. P. Lyon, I. Syed, A.J. Boden, and K. Savage, Magnesium Alloys Containing Rare Earths, U.S. Patent, Appl. 13/121588, 2009.

    Google Scholar 

  16. J.L. Schenkel, Anodized Magnesium or Magnesium Alloy Piston and Method for Manufacturing the Same, U.S. Patent, Appl. 09/970822, 2001.

    Google Scholar 

  17. L.L. Rokhlin, Magnesium Alloys Containing Rare Earth Metals: Structure and Properties, Taylor & Francis, London, 2003, p. 32.

    Google Scholar 

  18. J.F. Nie, Precipitation and hardening in magnesium alloys, Metall. Mater. Trans. A, 43(2012), No. 11, p. 3891.

    Article  Google Scholar 

  19. G.L. Xu, L.G. Zhang, L.B. Liu, Y. Du, F. Zhang, K. Xu, S.H. Liu, M.Y. Tan, and Z.P. Jin, Thermodynamic database of multi-component Mg alloys and its application to solidification and heat treatment, J. Magnesium Alloys, 4(2016), No. 4, p. 249.

    Article  Google Scholar 

  20. C. Antion, P. Donnadieu, F. Perrard, A. Deschamps, C. Tassin, and A. Pisch, Hardening precipitation in a Mg-4Y-3RE alloy, Acta Mater. 51(2003), No. 18, p. 5335.

    Article  Google Scholar 

  21. Z.Q. Wang, B. Zhang, D.J. Li, R. Fritzsch, X.Q. Zeng, H.J. Roven, and W.J. Ding, Effect of heat treatment on microstructures and mechanical properties of high vacuum die casting Mg-8Gd-3Y-0.4Zr magnesium alloy, Trans. Nonferrous Met. Soc. China, 24(2014), No. 12, p. 3762.

    Article  Google Scholar 

  22. J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, and B. Sundman, Thermo-Calc and DICTRA, computational tools for materials science, CALPHAD, 26(2002), No. 2, p. 273.

    Article  Google Scholar 

  23. E. Scheil, Bemerkungen zur schichtkristallbildung, Z. Metallkd., 34(1942), p. 70.

    Google Scholar 

  24. Thermo-Calc software TCAL4 Magnesium Alloys Database Version 4 [1 January 2018] https://www.thermocalc.com/media/19850/tcmg4_extended_info.pdf.

  25. M.A. Easton and D.H. StJohn, A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles, Acta Mater., 49(2001), No. 10, p. 1867.

    Article  Google Scholar 

  26. T.E. Quested, A.T. Dinsdale, and A.L. Greer, Thermodynamic modelling of growth-restriction effects in aluminium alloys, Acta Mater., 53(2005), No. 5, p. 1323.

    Article  Google Scholar 

  27. R. Schmid-Fetzer and A. Kozlov, Thermodynamic aspects of grain growth restriction in multicomponent alloy solidification, Acta Mater., 59(2011), No. 15, p. 6133.

    Article  Google Scholar 

  28. M. Yamasaki, M. Sasaki, M. Nishijima, K. Hiraga, and Y. Kawamura, Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature, Acta Mater., 55(2007), No. 20, p. 6798.

    Article  Google Scholar 

  29. Y.M. Zhu, A.J. Morton, and J.F. Nie, The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys, Acta Mater., 58(2010), No. 8, p. 2936.

    Article  Google Scholar 

  30. H.H. Zhang, J.F. Fan, L. Zhang, G.H. Wu, W.C. Liu, W.D. Cui, and S. Feng, Effect of heat treatment on microstructure, mechanical properties and fracture behaviors of sand-cast Mg-4Y-3Nd-1Gd-0.2Zn-0.5Zr alloy, Mater. Sci. Eng. A, 677(2016), p. 411.

    Article  Google Scholar 

  31. S.A. El Majid, G. Atiya, M. Bamberger, and A. Katsman, Nucleation and growth of metastable phases in Mg-Nd, Mg-Gd and Mg-Gd-Nd based alloys, [in] Proc. Symp. Magnesium Technology 2014, San Diego, 2014, p. 179.

    Google Scholar 

  32. P.H. Fu, L.M. Peng, H.Y. Jiang, J.W. Chang, and C.Q. Zhai, Effects of heat treatments on the microstructures and mechanical properties of Mg-3Nd-0.2Zn-0.4Zr (wt%) alloy, Mater. Sci. Eng. A, 486(2008), No. 1-2, p. 183.

    Article  Google Scholar 

  33. Y. Ali, D. Qiu, B. Jiang, F.S. Pan, and M.X. Zhang, Current research progress in grain refinement of cast magnesium alloys: A review article, J. Alloys Compd., 619(2015), p. 639.

    Article  Google Scholar 

  34. H.C. Pan, F.S. Pan, R.M. Yang, J. Peng, C.Y. Zhao, J. She, Z.Y. Gao, and A.T. Tang, Thermal and electrical conductivity of binary magnesium alloys, J. Mater. Sci., 49(2014), No. 8, p. 3107.

    Article  Google Scholar 

  35. M. Yamasaki and Y. Kawamura, Thermal diffusivity and thermal conductivity of Mg-Zn-rare earth element alloys with long-period stacking ordered phase, Scripta Mater., 60(2009), No. 4, p. 264.

    Article  Google Scholar 

  36. Y.W. Song, E.H. Han, D.Y. Shan, C.D. Yim, and B.S. You, The effect of Zn concentration on the corrosion behavior of Mg-xZn alloys, Corros. Sci., 65(2012), p. 322.

    Article  Google Scholar 

  37. E.L. Zhang, D.S. Yin, L.P. Xu, L. Yang, and K. Yang, Microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical application, Mater. Sci. Eng. C, 29(2009), No. 3, p. 987.

    Article  Google Scholar 

  38. Y. Yan, H.W. Cao, Y.J. Kang, K. Yu, T. Xiao, J. Luo, Y.W. Deng, H.J. Fang, H.Q. Xiong, and Y.L. Dai, Effects of Zn concentration and heat treatment on the microstructure, mechanical properties and corrosion behavior of as-extruded Mg-Zn alloys produced by powder metallurgy, J. Alloys Compd., 693(2017), p. 1277.

    Article  Google Scholar 

  39. H. Hermawan, D. Dubé, and D. Mantovani, Developments in metallic biodegradable stents, Acta Biomater., 6(2010), No. 5, p. 1693.

    Article  Google Scholar 

  40. E. Lukyanova, N. Anisimova, N. Martynenko, M. Kiselevsky, S. Dobatkin, and Y. Estrin, Features of in vitro and in vivo behaviour of magnesium alloy WE43, Mater. Lett., 215(2018), p. 308.

    Article  Google Scholar 

  41. E. Lukyanova, N. Anisimova, N. Martynenko, M. Kiselevsky, S. Dobatkin, and Y. Estrin, Features of in vitro and in vivo behaviour of magnesium alloy WE43, Mater. Lett., 215(2018), p. 308.

    Article  Google Scholar 

Download references

Acknowledgements

This research received financial support from the Ministry of Education and Science of the Russian Federation, Agreement No. 03.G25.31.0274 (27 May 2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Bazhenov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koltygin, A.V., Bazhenov, V.E., Khasenova, R.S. et al. Effects of small additions of Zn on the microstructure, mechanical properties and corrosion resistance of WE43B Mg alloys. Int J Miner Metall Mater 26, 858–868 (2019). https://doi.org/10.1007/s12613-019-1801-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1801-1

Keywords

Navigation