Skip to main content
Log in

Microstructural analysis and hot corrosion behavior of HVOF-sprayed Ni-22Cr-10Al-1Y and Ni-22Cr-10Al-1Y-SiC (N) coatings on ASTM-SA213-T22 steel

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The present paper deals with the investigation of microstructure and high-temperature hot corrosion behavior of high-velocity oxy fuel (HVOF)-produced coatings. Two powder coating compositions, namely, Ni22Cr10Al1Y alloy powder and Ni22Cr10Al1Y (80wt%; microsized)-silicon carbide (SiC) (20wt%; nano (N)) powder, were deposited on a T-22 boiler tube steel. The hot corrosion behavior of bare and coated steels was tested at 900°C for 50 cycles in Na2SO4-60wt%V2O5 molten-salt environment. The kinetics of corrosion was established with weight change measurements after each cycle. The microporosity and microhardness of the as-coated samples have been reported. The X-ray diffraction, field emission-scanning electron microscopy/energy dispersive spectroscopy, and X-ray mapping characterization techniques have been utilized for structural analysis of the as-coated and hot-corroded samples. The results showed that both coatings were deposited with a porosity less than 2%. Both coated samples revealed the development of harder surfaces than the substrate. During hot corrosion testing, the bare T22 steel showed an accelerated corrosion in comparison with its coated counterparts. The HVOF-sprayed coatings were befitted effectively by maintaining their adherence during testing. The Ni22Cr10Al1Y-20wt%SiC (N) composite coating was more effective than the Ni-22Cr-10Al-1Y coating against corrosion in the high-temperature fluxing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Eliaz, G. Shemesh, and R.M. Latanision, Hot corrosion in gas turbine components, Eng. Fail. Anal., 9(2002), No. 1, p. 31.

    CAS  Google Scholar 

  2. K. Yamada, Y. Tomono, J. Morimoto, Y. Sasaki, and A. Ohmori, Hot corrosion behavior of boiler tube materials in refuse incineration environment, Vacuum, 65(2002), No. 3–4, p. 533.

    CAS  Google Scholar 

  3. R.A. Rapp, Hot corrosion of materials: A fluxing mechanism?, Corros. Sci., 44(2002), No. 2, p. 209.

    CAS  Google Scholar 

  4. S. Kamal, R. Jayaganthan, and S. Prakash, High temperature cyclic oxidation and hot corrosion behaviours of superalloys at 900°C, Bull. Mater. Sci., 33(2010), No. 3, p. 299.

    CAS  Google Scholar 

  5. H. Singh, D. Puri, and S. Prakash, An overview of Na2SO4 and/or V2O5 induced hot corrosion of Fe- and Ni-based superalloys, Rev. Adv. Mater. Sci., 16(2007), No. 1–2, p. 27.

    CAS  Google Scholar 

  6. G.A. Kolta, I.F. Hewaidy, and N.S. Felix, Reactions between sodium sulphate and vanadium pentoxide, Thermochim. Acta, 4(1972), No. 2, p. 151.

    CAS  Google Scholar 

  7. G.W. Goward, Protective coatings-Purpose, role, and design, Mater. Sci. Technol., 2(1986), No. 3, p. 194.

    CAS  Google Scholar 

  8. C. Wagner, Oxidation of alloys involving noble metals, J. Electrochem. Soc., 103(1956), No. 10, p. 571.

    CAS  Google Scholar 

  9. T.S. Sidhu, R.D. Agrawal, and S. Prakash, Hot corrosion of some superalloys and role of high-velocity oxy-fuel spray coatings—A review, Surf. Coat. Technol., 198(2005), No. 1–3, p. 441.

    CAS  Google Scholar 

  10. Y. Wang and W. Chen, Microstructures, properties and high-temperature carburization resistances of HVOF thermal sprayed NiAl intermetallic-based alloy coatings, Surf. Coat. Technol., 183(2004), No. 1, p. 18.

    CAS  Google Scholar 

  11. G. Marginean and D. Utu, Cyclic oxidation behaviour of different treated CoNiCrAlY coatings, Appl. Surf. Sci., 258(2012), No. 20, p. 8307.

    CAS  Google Scholar 

  12. L. Ajdelsztajn, J.A. Picas, G.E. Kim, F.L. Bastian, J. Schoenung, and V. Provenzano, Oxidation behavior of HVOF sprayed nanocrystalline NiCrAlY powder, Mater. Sci. Eng. A, 338(2002), No. 1–2, p. 33.

    Google Scholar 

  13. Y.N. Wu, M. Qin, Z.C. Feng, Y. Liang, C. Sun, and F.H. Wang, Improved oxidation resistance of NiCrAlY coatings, Mater. Lett., 57(2003), No. 16–17, p. 2404.

    CAS  Google Scholar 

  14. L.J. Zhu, S.L. Zhu, and F.H. Wang, Hot corrosion behaviour of a Ni + CrAlYSiN composite coating in Na2SO4-25wt%NaCl melt, Appl. Surf. Sci., 268(2013), p. 103.

    CAS  Google Scholar 

  15. W.Z. Li, Y. Yao, Q.M. Wang, Z.B. Bao, J. Gong, C. Sun, and X. Jiang, Improvement of oxidation-resistance of NiCrAlY coatings by application of CrN or CrON interlayer, J. Mater. Res., 23(2008), No. 2, p. 341.

    CAS  Google Scholar 

  16. H.R. Eschnauer and O. Knotek, Complex carbide powders for plasma spraying, Thin Solid Films, 45(1977), No. 2, p. 287.

    CAS  Google Scholar 

  17. J. Mehta, V.K. Mittal, and P. Gupta, Role of thermal spray coatings on wear, erosion and corrosion behavior?: A review, J. Appl. Sci. Eng., 20(2017), No. 4, p. 445.

    Google Scholar 

  18. J. Wang, K. Li, D. Shu, X. He, B.D. Sun, Q.X. Guo, M. Nishio, and H. Ogawa, Effects of structure and processing technique on the properties of thermal spray WC-Co and NiCrAl/WC-Co coatings, Mater. Sci. Eng. A, 371(2004), No. 1–2, p. 187.

    Google Scholar 

  19. Q. Li, G.M. Song, Y.Z. Zhang, T.C. Lei, and W.Z. Chen, Microstructure and dry sliding wear behavior of laser clad Ni-based alloy coating with the addition of SiC, Wear, 254(2003), No. 3–4, p. 222.

    CAS  Google Scholar 

  20. Y. Zhou, H. Zhang, and B. Qian, Friction and wear properties of the co-deposited Ni-SiC nanocomposite coating, Appl. Surf. Sci., 253(2007), No. 20, p. 8335.

    CAS  Google Scholar 

  21. F. Mubarok and N. Espallargas, Tribological behaviour of thermally sprayed silicon carbide coatings, Tribol. Int., 85(2015), p. 56.

    CAS  Google Scholar 

  22. M. Tului, B. Giambi, S. Lionetti, G. Pulci, F. Sarasini, and T. Valente, Silicon carbide-based plasma sprayed coatings, Surf. Coat. Technol., 207(2012), p. 182.

    CAS  Google Scholar 

  23. T.Y. Ouyang, S.H. Xiong, Y. Zhang, D.W. Liua, X.W. Fang, Y. Wang, S.J. Feng, T. Zhou, and J.P. Suo, Cyclic oxidation behavior of SiC-containing self-healing TBC systems fabricated by APS, J. Alloys Compd., 691(2017), p. 811.

    CAS  Google Scholar 

  24. M. Roy, A. Pauschitz, J. Bernardi, T. Koch, and F. Franek, Microstructure and mechanical properties of HVOF sprayed nanocrystalline Cr3C2-25 (Ni20Cr) coating, J. Therm. Spray Technol., 15(2006), No. 3, p. 372.

    CAS  Google Scholar 

  25. L. Pawlowski, Finely grained nanometric and submicrometric coatings by thermal spraying: A review, Surf. Coat. Technol., 202(2008), No. 18, p. 4318.

    CAS  Google Scholar 

  26. M.H. Enayati, F. Karimzadeh, M. Tavoosi, B. Movahedi, and A. Tahvilian, Nanocrystalline NiAl coating prepared by HVOF thermal spraying, J. Therm. Spray Technol., 20(2011), No. 3, p. 440.

    CAS  Google Scholar 

  27. T. Grosdidier, A. Tidu, and H.L. Liao, Nanocrystalline Fe-40Al coating processed by thermal spraying of milled powder, Scripta Mater., 44(2001), No. 3, p. 387.

    CAS  Google Scholar 

  28. C. Suryanarayana, Synthesis of nanocomposites by mechanical alloying, J. Alloys Compd., 509(2011), p. S229.

    CAS  Google Scholar 

  29. D.L. Zhang, Processing of advanced materials using high-energy mechanical milling, Prog. Mater. Sci., 49(2004), No. 3–4, p. 537.

    CAS  Google Scholar 

  30. G. Xanthopoulou, A. Marinou, G. Vekinis, A. Lekatou, and M. Vardavoulias, Ni-Al and NiO-Al composite coatings by combustion-assisted flame spraying, Coatings, 4(2014), No. 2, p. 231.

    Google Scholar 

  31. M. Oksa, E. Turunen, T. Suhonen, T. Varis, and S.P. Hannula, Optimization and characterization of high velocity oxy-fuel sprayed coatings: Techniques, materials, and applications, Coatings, 1(2011), No. 1, p. 17.

    Google Scholar 

  32. T. Sundararajan, S. Kuroda, T. Itagaki, and F. Abe, Steam oxidation resistance of Ni-Cr thermal spray coatings on 9Cr-1Mo steel. Part 2: 50Ni-50Cr, ISIJ Int., 43(2003), No. 1, p. 104.

    CAS  Google Scholar 

  33. N.F. Ak, C. Tekmen, I. Ozdemir, H.S. Soykan, and E. Celik, NiCr coatings on stainless steel by HVOF technique, Surf. Coat. Technol., 174–175(2003), p. 1070.

    Google Scholar 

  34. A.H. Dent, A.J. Horlock, D.G. McCartney, and S.J. Harris, The corrosion behavior and microstructure of high-velocity oxy-fuel sprayed nickel-base amorphous/nanocrystalline coatings, J. Therm. Spray Technol., 8(1999), No. 3, p. 399.

    CAS  Google Scholar 

  35. D. Das, R. Balasubramaniam, and M.N. Mungole, Hot corrosion of Fe3Al, J. Mater. Sci., 37(2002), No. 6, p. 1135.

    CAS  Google Scholar 

  36. N. Bala, H. Singh, and S. Prakash, Accelerated hot corrosion studies of cold spray Ni-50Cr coating on boiler steels, Mater. Des., 31(2010), No. 1, p. 244.

    CAS  Google Scholar 

  37. T.S. Sidhu, S. Prakash, and R.D. Agrawal, Performance of high-velocity oxy fuel-sprayed coatings on an Fe-based superalloy in Na2SO4-60% V2O5 environment at 900°C Part II: Hot corrosion behavior of the coatings, J. Mater. Eng. Perform., 15(2006), No. 1, p. 130.

    CAS  Google Scholar 

  38. B.S. Sidhu and S. Prakash, Evaluation of the corrosion behaviour of plasma-sprayed Ni3Al coatings on steel in oxidation and molten salt environments at 900°C, Surf. Coat. Technol., 166(2003), No. 1, p. 89.

    CAS  Google Scholar 

  39. S. Danyluk and J.Y. Park, Corrosion and grain boundary penetration in type 316 stainless steel exposed to a coal gasification environment, Corrosion, 35(1979), No. 12, p. 575.

    CAS  Google Scholar 

  40. P. Niranatlumpong, C.B. Ponton, and H.E. Evans, The failure of protective oxides on plasma-sprayed NiCrAlY overlay coatings, Oxid. Met., 53(2000), No. 3–4, p. 241.

    CAS  Google Scholar 

  41. H. Yamano, K. Tani, Y. Harada, and T. Teratani, Oxidation control with chromate pretreatment of MCrAlY unmelted particle and bond coat in thermal barrier system, J. Therm. Spray Technol., 17(2008), No. 2, p. 275.

    CAS  Google Scholar 

  42. F. Tang, L. Ajdelsztajn, and J.M. Schoenung, Characterization of oxide scales formed on HVOF NiCrAlY coatings with various oxygen contents introduced during thermal spraying, Scripta Mater., 51(2004), No. 1, p. 25.

    CAS  Google Scholar 

  43. A. Andersen, B. Haflan, P. Kofstad, and P.K. Lillerud, High temperature corrosion of nickel and dilute nickelbased alloys in (SO2-O2)/SO3 mixtures, Mater. Sci. Eng., 87(1987), p. 45.

    CAS  Google Scholar 

  44. F.H. Stott, Developments in understanding the mechanisms of growth of protective scales on high-temperature alloys, Mater. Charact., 28(1992), No. 3, p. 311.

    CAS  Google Scholar 

  45. N.S. Bornstein, M.A. DeCrescente, and H.A. Roth, The relationship between relative oxide ion content of Na2SO4, the presence of liquid metal oxides and sulfidation attack, Metall. Trans., 4(1973), No. 8, p. 1799.

    CAS  Google Scholar 

  46. J.A. Goebel, F.S. Pettit, and G.W. Goward, Mechanisms for the hot corrosion of nickel-base alloys, Metall. Trans., 4(1973), No. 1, p. 261.

    CAS  Google Scholar 

  47. G.W. Goward, Progress in coatings for gas turbine airfoils, Surf. Coat. Technol., 108(1998), p. 73.

    Google Scholar 

  48. S. Kamal, K.V. Sharma, and A.M. Abdul-Rani, Hot corrosion behavior of superalloy in different corrosive environments, J. Miner. Mater. Charact. Eng., 3(2015), p. 26.

    CAS  Google Scholar 

  49. D.K. Gupta and D.S. Duvall, A silicon and hafnium modified plasma sprayed MCrAlY coating, Superalloys, 1984, p. 711.

  50. J. Roy, S. Chandra, S. Das, and S. Maitra, Oxidation behaviour of silicon carbide—A review, Rev. Adv. Mater. Sci., 38(2014), p. 29.

    CAS  Google Scholar 

  51. J.L. Smialek and N.S. Jacobson, Mechanism of strength degradation for hot corrosion of α-SiC, J. Am. Ceram. Soc., 69(1986), No. 10, p. 741.

    CAS  Google Scholar 

  52. Q.G. Fu, H.J. Li, X.H. Shi, K.Z. Li, and G.D. Sun, Silicon carbide coating to protect carbon/carbon composites against oxidation, Scripta Mater., 52(2005), No. 9, p. 923.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge IKGPTU, Jalandhar (Punjab) for their help in carrying out this experimental research. The authors also appreciatively acknowledge DST, New Delhi for their research grant (No. SB/FTP/ETA-435/2012, Dated-10/6/2013) that funded the research and development of the project entitled “Nano-composite Coatings to Control Erosion of Boiler Tubes of Steam Generating Plants.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurmail Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Bala, N. & Chawla, V. Microstructural analysis and hot corrosion behavior of HVOF-sprayed Ni-22Cr-10Al-1Y and Ni-22Cr-10Al-1Y-SiC (N) coatings on ASTM-SA213-T22 steel. Int J Miner Metall Mater 27, 401–416 (2020). https://doi.org/10.1007/s12613-019-1946-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1946-y

Keywords

Navigation