Skip to main content
Log in

Optimization of battery life and capacity by setting dense mesopores on the surface of nanosheets used as electrode

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Nanosheets with mesopores on the surface have been prepared using molybdenum trioxide (α-MoO3). The effect of mesopores on the performance of the electrode remains elusive. The MoO3 nanosheets obtained in this study exhibited great battery performance, including good capacity, prolonged recycling life cycles, and excellent rate performance; e.g., 780 mAh/g when charged under a super high current-density of 1000 mA/g. These nanosheets demonstrated excellent stability, maintaining a capacity of 1189 mAh/g after 20 cycles, and 1075 mAh/g after 50 cycles; thus preventing the capacity to decrease to values under the scanning rate of 100 mA/g. These high-purity MoO3 nanosheets are well-ordered and have dense mesopores on the surface; these micropores contribute to the excellent electrode performance of the host electrode materials; the performance parameters include prolonged battery life and capacity. Setting mesopores or active sites on the electrode surface can be an alternative way to obtain stable electrodes in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Larcher and J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem., 7(2015), No. 1, p. 19.

    Article  CAS  Google Scholar 

  2. B.W. Lin, X.H. Zhu, L.Z. Fang, X.Y. Liu, S. Li, T. Zhai, L. Xue, Q.B. Guo, J. Xu, and H. Xia, Birnessite nanosheet arrays with high K content as a high-capacity and ultrastable cathode for K-ion batteries, Adv. Mater., 31(2019), No. 24, art. No. 1900060.

    Google Scholar 

  3. S.B. Yang, X.L. Feng, S. Ivanovici, and K. Müllen, Fabrication of graphene-encapsulated oxide nanoparticles: Towards high-performance anode materials for lithium storage, Angew. Chem. Int. Ed., 49(2010), No. 45, p. 8408.

    Article  CAS  Google Scholar 

  4. S. Han, D.Q. Wu, S. Li, F. Zhang, and X.L. Feng, Porous graphene materials for advanced electrochemical energy storage and conversion devices, Adv. Mater., 26(2014), No. 6, p. 849.

    Article  CAS  Google Scholar 

  5. S. Wang, Q.Y. Wang, P.P. Shao, Y.Z. Han, X. Gao, L. Ma, S. Yuan, X.J. Ma, J.W. Zhou, X. Feng, and B. Wang, Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries, J. Am. Chem. Soc., 139(2017), No. 12, p. 4258.

    Article  CAS  Google Scholar 

  6. H.J. Zhang, L.J. Gao, and Y.J. Gong, Exfoliated MoO3 nanosheets for high-capacity lithium storage, Electrochem. Commun., 52(2015), p. 67.

    Article  CAS  Google Scholar 

  7. B. Wang, X.L. Li, T.F. Qiu, B. Luo, J. Ning, J. Li, X.F. Zhang, M.H. Liang, and L.J. Zhi, High volumetric capacity silicon-based lithium battery anodes by nanoscale system engineering, Nano. Lett., 13(2013), No. 11, p. 5578.

    Article  CAS  Google Scholar 

  8. H.N. Li, Y.M. Shi, M.H. Chiu, and L.J. Li, Emerging energy applications of two-dimensional layered transition metal dichalcogenides, Nano Energy, 18(2015), p. 293.

    Article  CAS  Google Scholar 

  9. X.J. Cui, J.P. Xiao, Y.H. Wu, P.P. Du, R. Si, H.X. Yang, H.F. Tian, J.Q. Li, W.H. Zhang, D.H. Deng, and X.H. Bao, A graphene composite material with single cobalt active sites: A highly efficient counter electrode for dye-sensitized solar cells, Angew. Chem. Int. Ed., 55(2016), No. 23, p. 6708.

    Article  CAS  Google Scholar 

  10. X.Q. Xie, T. Makaryan, M.Q. Zhao, K.L. Van Aken, Y. Gogotsi, and G.X. Wang, MoS2 nanosheets vertically aligned on carbon paper: A freestanding electrode for highly reversible sodium-ion batteries, Adv. Energy Mater., 6(2016), No. 5, art. No. 1502161.

    Google Scholar 

  11. L. Li, G.M. Zhou, L.C. Yin, N. Koratkar, F. Li, and H.M. Cheng, Stabilizing sulfur cathodes using nitrogen-doped graphene as a chemical immobilizer for Li-S batteries, Carbon, 108(2016), p. 120.

    Article  CAS  Google Scholar 

  12. M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem., 5(2013), No. 4, p. 263.

    Article  Google Scholar 

  13. D. Sun, D.L. Ye, P. Liu, Y.G. Tang, J. Guo, L.Z. Wang, and H.Y. Wang, MoS2/graphene nanosheets from commercial bulky mos2 and graphite as anode materials for high rate sodium-ion batteries, Adv. Energy Mater., 8(2018), No. 10, art. No. 1702383.

    Google Scholar 

  14. D.W. Su, S.X. Dou, and G.X. Wang, Ultrathin MoS2 nanosheets as anode materials for sodium-ion batteries with superior performance, Adv. Energy Mater., 5(2015), No. 6, p. 1.

    Article  CAS  Google Scholar 

  15. J.K. Miao, D.P. Cai, J.H. Si, Q.T. Wang, and H.B. Zhan, Multicomponent hierarchical hollow Co-Mo-O nanocages anchored on reduced graphene oxide with strong interfacial interaction for lithium-ion batteries, J. Alloys Compd., 828(2020), art. No. 154379.

  16. H. Xia, X.H. Zhu, J.Z. Liu, Q. Liu, S. Lan, Q.H. Zhang, X.Y. Liu, J.K. Seo, T.T. Chen, L. Gu, and Y.S. Meng, A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage, Nat. Commun., 9(2018), No. 1, p. 1.

    Article  CAS  Google Scholar 

  17. L. Xue, Q.H. Zhang, X.H. Zhu, L. Gu, J.L. Yue, Q.Y. Xia, T. Xing, T.T. Chen, Y. Yao, and H. Xia, 3D LiCoO2 nanosheets assembled nanorod arrays via confined dissolution-recrystallization for advanced aqueous lithium-ion batteries, Nano Energy, 56(2019), p. 463.

    Article  CAS  Google Scholar 

  18. W.W. Yang, J.W. Xiao, Y. Ma, S.Q. Cui, P. Zhang, P.B. Zhai, L.J. Meng, X.G. Wang, Y. Wei, Z.G. Du, B.X. Li, Z.B. Sun, S.B. Yang, Q.F. Zhang, and Y.J. Gong, Tin intercalated ultrathin moo3 nanoribbons for advanced lithium-sulfur batteries, Adv. Energy Mater., 9(2019), No. 7, art. No. 1803137.

    Google Scholar 

  19. T. Tojo, H. Tawa, N. Oshida, R. Inada, and Y. Sakurai, Electrochemical characterization of a layered α-MoO3 as a new cathode material for calcium ion batteries, J. Electroanal. Chem., 825(2018), p. 51.

    Article  CAS  Google Scholar 

  20. R.Y. Zhuang, S.S. Yao, X.Q. Shen, and T.B. Li, Hydrothermal synthesis of mesoporous MoO2 nanospheres as sulfur matrix for lithium sulfur battery, J. Electroanal. Chem., 833(2019), p. 441.

    Article  CAS  Google Scholar 

  21. K. Wu, J. Zhan, G. Xu, C. Zhang, D.Y. Pan, and M.H. Wu, MoO3 nanosheet arrays as superior anode materials for Li- and Na-ion batteries, Nanoscale, 10(2018), No. 34, p. 16040.

    Article  CAS  Google Scholar 

  22. Z. Li, J.T. Zhang, and X.W. Lou, Hollow carbon nanofibers filled with mno2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries, Angew. Chem. Int. Ed., 54(2015), No. 44, p. 12886.

    Article  CAS  Google Scholar 

  23. Y.F. Sun, S. Gao, F.C. Lei, and Y. Xie, Atomically-thin two-dimensional sheets for understanding active sites in catalysis, Chem. Soc. Rev., 44(2015), No. 3, p. 623.

    Article  CAS  Google Scholar 

  24. L.H. Su, Y. Wang, Y.F. Sha, and M.W. Hao, Ternary active site Co3O4/NiO/MnO2 electrode with enhanced capacitive performances, J. Alloys Compd., 656(2016), p. 585.

    Article  CAS  Google Scholar 

  25. X.F. Li, D.S. Geng, Y. Zhang, X.B. Meng, R.Y. Li, and X.L. Sun, Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries, Electrochem. Commun., 13(2011), No. 8, p. 822.

    Article  CAS  Google Scholar 

  26. X.P. Han, G.W. He, Y. He, J.F. Zhang, X.R. Zheng, L.L. Li, C. Zhong, W.B. Hu, Y.D. Deng, and T.Y. Ma, Engineering catalytic active sites on cobalt oxide surface for enhanced oxygen electrocatalysis, Adv. Energy Mater., 8(2018), No. 10, art. No. 1702222.

    Google Scholar 

  27. T. Dabrowski, A. Struck, D. Fenske, P. Maas, and L.C. Ciacchi, Optimization of catalytically active sites positioning in porous cathodes of lithium/air batteries filled with different electrolytes, J. Electrochem. Soc., 162(2015), No. 14, p. A2796.

    Article  CAS  Google Scholar 

  28. Z.Y. Wang, S. Madhavi, and X.W. Lou, Ultralong α-MoO3 nanobelts: Synthesis and effect of binder choice on their lithium storage properties, J. Phys. Chem. C, 116(2012), No. 23, p. 12508.

    Article  CAS  Google Scholar 

  29. L.A. Riley, S.H. Lee, L. Gedvilias, and A.C. Dillon, Optimization of MoO3 nanoparticles as negative-electrode material in high-energy lithium ion batteries, J. Power Sources, 195(2010), No. 2, p. 588.

    Article  CAS  Google Scholar 

  30. C.V.S. Reddy, Z.R. Deng, Q.Y. Zhu, Y. Dai, J. Zhou, W. Chen, and S.I. Mho, Characterization of MoO3 nanobelt cathode for Li-battery applications, Appl. Phys. A, 89(2007), No. 4, p. 995.

    Article  CAS  Google Scholar 

  31. P. Meduri, E. Clark, J.H. Kim, E. Dayalan, G.U. Sumanasekera, and M.K. Sunkara, MoO3−x nanowire arrays as stable and high-capacity anodes for lithium ion batteries, Nano. Lett., 12(2012), No. 4, p. 1784.

    Article  CAS  Google Scholar 

  32. Q. Xia, H.L, Zhao, Z.H, Du, Z.P. Zeng, C.H. Gao, Z.J. Zhang, X.F. Du, A. Kulka, and K. Świerczek, Facile synthesis of MoO3/carbon nanobelts as high-performance anode material for lithium ion batteries, Electrochim. Acta, 180(2015), p. 947.

    Article  CAS  Google Scholar 

  33. Y.J. Gong, S.B. Yang, Z. Liu, L.L. Ma, R. Vajtai, and P.M. Ajayan, Graphene-network-backboned architectures for high-performance lithium storage, Adv. Mater., 25(2013), No. 29, p. 3979.

    Article  CAS  Google Scholar 

  34. U.K. Sen, A. Shaligram, and S. Mitra, Intercalation anode material for lithium ion battery based on molybdenum dioxide, ACS Appl. Mater. Interfaces, 6(2014), No. 16, p. 14311.

    Article  CAS  Google Scholar 

  35. J.F. Yan, S.Y. Zhang, G. Wang, H. Wang, Z.Y. Zhang, X.F. Ruan, and H.Y. Zheng, Preparation assisted via thermal stress and electrochemical performance of graphene nano-sheets as anode materials for lithium-ion batteries, Integr. Ferroelectr., 160(2015), No. 1, p. 2.

    Article  CAS  Google Scholar 

  36. D. Mariotti, H. Lindstrom, A.C. Bose, and K.K. Ostrikov, Monoclinic β-MoO3 nanosheets produced by atmospheric microplasma: application to lithium-ion batteries, Nanotechnology, 19(2008), No. 49, art. No. 495302.

    Google Scholar 

  37. X.J. Zhao, W. Jia, X.Y. Wu, Y. Lv, J.S. Qiu, J.X. Guo, X.C. Wang, D.Z. Jia, J.F. Yan, and D.L. Wu, Ultrafine MoO3 anchored in coal-based carbon nanofiber as anode for advanced lithium-ion batteries, Carbon, 156(2020), p. 445.

    Article  CAS  Google Scholar 

  38. L.Q. Mai, B. Hu, W. Chen, Y.Y. Qi, C.S. Lao, R.S. Yang, Y. Dai, and Z.L. Wang, Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries, Adv. Mater., 19(2007), No. 21, p. 3712.

    Article  CAS  Google Scholar 

  39. B. Ahmed, M. Shahid, D.H. Nagaraju, D.H. Anjum, M.N. Hedhili, and H.N. Alshareef, Surface passivation of moo3 nanorods by atomic layer deposition toward high rate durable li ion battery anodes, ACS Appl. Mater. Interfaces, 7(2015), No. 24, p. 13154.

    Article  CAS  Google Scholar 

  40. J.F. Ni, G.B. Wang, J. Yang, D.L. Gao, J.T. Chen, L.J. Gao, and Y. Li, Carbon nanotube-wired and oxygen-deficient MoO3 nanobelts with enhanced lithium-storage capability, J. Power Sources, 247(2014), p. 90.

    Article  CAS  Google Scholar 

  41. H.J. Peng, J.Q. Huang, M.Q. Zhao, Q. Zhang, X.B. Cheng, X.Y. Liu, W.Z. Qian, and F. Wei, Nanoarchitectured graphene/CNT@ porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries, Adv. Funct. Mater., 24(2014), No. 19, p. 2772.

    Article  CAS  Google Scholar 

  42. W. Zhuang, L. Li, J.H. Zhu, R. An, L.H. Lu, X. Lu, X.B. Wu, and H.J. Ying, Facile synthesis of mesoporous MoS2-TiO2 nanofibers for ultrastable lithium ion battery anodes, ChemElectro-Chem, 2(2015), No. 3, p. 374.

    Article  CAS  Google Scholar 

  43. H. Liu, D.W. Su, R.F. Zhou, B. Sun, G.X. Wang, and S.Z. Qiao, Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage, Adv. Energy Mater., 2(2012), No. 8, p. 970.

    Article  CAS  Google Scholar 

  44. Y.F. Shi, Y. Wan, R.L. Liu, B. Tu, and D.Y. Zhao, Synthesis of highly ordered mesoporous crystalline WS2 and MoS2 via a high-temperature reductive sulfuration route, J. Am. Chem. Soc., 129(2007), No. 30, p. 9522.

    Article  CAS  Google Scholar 

  45. R. Nadimicherla, R.H. Zha, L. Wei, and X. Guo, Single crystalline flowerlike α-MoO3 nanorods and their application as anode material for lithium-ion batteries, J. Alloys Compd., 687(2016), p. 79.

    Article  CAS  Google Scholar 

  46. M.B. Sreedhara, A.L. Santhosha, A.J. Bhattacharyya, and C.N.R. Rao, Composite of few-layer MoO3 nanosheets with graphene as a high performance anode for sodium-ion batteries, J. Mater. Chem. A, 4(2016), No. 24, p. 9466.

    Article  CAS  Google Scholar 

  47. W.Q. Yao, S.B. Wu, L. Zhan, and Y.L. Wang, Two-dimensional porous carbon-coated sandwich-like mesoporous SnO2/graphene/mesoporous SnO2 nanosheets towards high-rate and long cycle life lithium-ion batteries, Chem. Eng. J., 361(2019), p. 329.

    Article  CAS  Google Scholar 

  48. M.Y. Wang, Y. Huang, Y.D. Zhu, N. Zhang, J.X. Zhang, X.L. Qin, and H.M. Zhang, Synthesis of porous ZnxCo3−xO4 hollow nanoboxes derived from metal-organic frameworks for lithium and sodium storage, Electrochim. Acta, 335(2020), art. No. 135694.

  49. M.Y. Wang, Y. Huang, N. Zhang, Y.D. Zhu, H.M. Zhang, and J.K. Kim, Fabrication of Ti3+ doped TiO2 coated Mn3O4 nanorods with voids and channels for lithium storage, Chem. Eng. J., 370(2019), p. 1425.

    Article  CAS  Google Scholar 

  50. K. Moyer, R. Carter, T. Hanken, A. Douglas, L. Oakes, and C.L. Pint, Electrophoretic deposition of LiFePO4 onto 3-D current collectors for high areal loading battery cathodes, Mater. Sci. Eng. B, 241(2019), p. 42.

    Article  CAS  Google Scholar 

  51. H. Tang, J. Zhang, Y.J. Zhang, Q.Q. Xiong, Y.Y. Tong, Y. Li, X.L. Wang, C.D. Gu, and J.P. Tu, Porous reduced graphene oxide sheet wrapped silicon composite fabricated by steam etching for lithium-ion battery application, J. Power Sources, 286(2015), p. 431.

    Article  CAS  Google Scholar 

  52. Y.X. Sun, J. Wang, B.T. Zhao, R. Cai, R. Ran, and Z.P. Shao, Binder-free α-MoO3 nanobelt electrode for lithium-ion batteries utilizing van der Waals forces for film formation and connection with current collector, J. Mater. Chem. A, 1(2013), No. 15, p. 4736.

    Article  CAS  Google Scholar 

  53. Z.Q. Yuan, L.L. Si, D.H. Wei, L. Hu, Y.C. Zhu, X.N. Li, and Y.T. Qian, Vacuum topotactic conversion route to mesoporous orthorhombic moo3 nanowire bundles with enhanced electrochemical performance, J. Phys. Chem. C, 118(2014), No. 10, p. 5091.

    Article  CAS  Google Scholar 

  54. K. Dewangan, N.N. Sinha, P.K. Sharma, A.C. Pandey, N. Munichandraiah, and N.S. Gajbhiye, Synthesis and characterization of single-crystalline α-MoO3 nanofibers for enhanced Liion intercalation applications, CrystEngComm, 13(2011), No. 3, p. 927.

    Article  CAS  Google Scholar 

  55. S.H. Lee, Y.H. Kim, R. Deshpande, P.A. Parilla, E. Whitney, D.T. Gillaspie, K.M. Jones, A.H. Mahan, S.B. Zhang, and A.C. Dillon, Reversible lithium-ion insertion in molybdenum oxide nanoparticles, Adv. Mater., 20(2008), No. 19, p. 3627.

    Article  CAS  Google Scholar 

  56. C.L. Liu, Y. Wang, C. Zhang, X.S. Li, and W.S. Dong, In situ synthesis of α-MoO3/graphene composites as anode materials for lithium ion battery, Mater. Chem. Phys., 143(2014), No. 3, p. 1111.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51771125). We thank S.L. Wang for her help with the TEM characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Liu or Qing-song Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Yq., Zhang, Xy., Liu, Lm. et al. Optimization of battery life and capacity by setting dense mesopores on the surface of nanosheets used as electrode. Int J Miner Metall Mater 28, 142–149 (2021). https://doi.org/10.1007/s12613-020-2088-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2088-y

Keywords

Navigation