Skip to main content

Advertisement

Log in

Practical development and challenges of garnet-structured Li7La3Zr2O12 electrolytes for all-solid-state lithium-ion batteries: A review

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

All-solid-state Li-ion batteries (ASSLIBs) have been widely studied to achieve Li-ion batteries (LIBs) with high safety and energy density. Recent reviews and experimental papers have focused on methods that improve the ionic conductivity, stabilize the electrochemical performance, and enhance the electrolyte/electrode interfacial compatibility of several solid-state electrolytes (SSEs), including oxides, sulfides, composite and gel electrolytes, and so on. Garnet-structured Li7La3Zr2O12 (LLZO) is highly regarded an SSE with excellent application potential. However, this type of electrolyte also possesses a number of disadvantages, such as low ionic conductivity, unstable cubic phase, and poor interfacial compatibility with anodes/cathodes. The benefits of LLZO have urged many researchers to explore effective solutions to overcome its inherent limitations. Herein, we review recent developments on garnet-structured LLZO and provide comprehensive insights to guide the development of garnet-structured LLZO-type electrolytes. We not only systematically and comprehensively discuss the preparation, element doping, structure, stability, and interfacial improvement of LLZOs but also provide future perspectives for these materials. This review expands the current understanding on advanced solid garnet electrolytes and provides meaningful guidance for the commercialization of ASSLIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Yang, H.J. Liu, F. Bai, E.H. Wang, J.H. Chen, K.C. Chou, and X.M. Hou, Supercapacitor electrode based on few-layer h-BNNSs/rGO composite for wide-temperature-range operation with robust stable cycling performance, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 220.

    Article  CAS  Google Scholar 

  2. L.T. Zhang, Z. Sun, Z.L. Cai, N.H. Yan, X. Lu, X.Q. Zhu, and L.X. Chen, Enhanced hydrogen storage properties of MgH2 by the synergetic catalysis of Zr0.4Ti0.6Co nanosheets and carbon nanotubes, Appl. Surf. Sci., 504(2020), art. No. 144465.

  3. Y.P. Li, Q.B. Zhang, Y.F. Yuan, H.D. Liu, C.H. Yang, Z. Lin, and J. Lu, Surface amorphization of vanadium dioxide (B) for K-ion battery, Adv. Energy Mater., 10(2020), No. 23, art. No. 2000717.

  4. F. Díaz-González, A. Sumper, O. Gomis-Bellmunt, and R. Villafáfila-Robles, A review of energy storage technologies for wind power applications, Renewable Sustainable Energy Rev., 16(2012), No. 4, p. 2154.

    Article  Google Scholar 

  5. Q.H. Chen, Y. Cheng, H.D. Liu, Q.B. Zhang, V. Petrova, H.X. Chen, P. Liu, D.L. Peng, M.L. Liu, and M.S. Wang, Hierarchical design of Mn2P nanoparticles embedded in N, P-codoped porous carbon nanosheets enables highly durable lithium storage, ACS Appl. Mater. Interfaces, 12(2020), No. 32, p. 36247.

    Article  CAS  Google Scholar 

  6. L.T. Zhang, L. Ji, Z.D. Yao, N.H. Yan, Z. Sun, X.L. Yang, X.Q. Zhu, S.L. Hu, and L.X. Chen, Facile synthesized Fe nanosheets as superior active catalyst for hydrogen storage in MgH2, Int. J. Hydrogen Energy, 44(2019), No. 39, p. 21955.

    Article  CAS  Google Scholar 

  7. L.T. Zhang, Z.L. Cai, Z.D. Yao, L. Ji, Z. Sun, N.H. Yan, B.Y. Zhang, B.B. Xiao, J. Du, X.Q. Zhu, and L.X. Chen, A striking catalytic effect of facile synthesized ZrMn2 nanoparticles on the de/rehydrogenation properties of MgH2, J. Mater. Chem. A, 7(2019), No. 10, p. 5626.

    Article  Google Scholar 

  8. J.M. Chen, Y. Cheng, Q.B. Zhang, C. Luo, H.Y. Li, Y. Wu, H.H. Zhang, X. Wang, H.D. Liu, X. He, J.J. Han, D.L. Peng, M.L. Liu, and M.S. Wang, Designing and understanding the superior potassium storage performance of nitrogen/phosphorus co-doped hollow porous bowl-like carbon anodes, Adv. Funct. Mater., 31(2021), No. 1, art. No. 2007158.

  9. L.Z. Zhao, H.H. Wu, C.H. Yang, Q.B. Zhang, G.M. Zhong, Z.M. Zheng, H.X. Chen, J.M. Wang, K. He, B.L. Wang, T. Zhu, X.C. Zeng, M.L. Liu, and M.S. Wang, Mechanistic origin of the high performance of yolk@shell Bi2S3@N-doped carbon nanowire electrodes, ACS Nano, 12(2018), No. 12, p. 12597.

    Article  CAS  Google Scholar 

  10. Y. Han, S.Y. Liu, L. Cui, L. Xu, J. Xie, X.K. Xia, W.K. Hao, B. Wang, H. Li, and J. Gao, Graphene-immobilized flowerlike Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 88.

    Article  CAS  Google Scholar 

  11. L. Chen, W.X. Li, L.Z. Fan, C.W. Nan, and Q. Zhang, Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries, Adv. Funct. Mater., 29(2019), No. 28, art. No. 1901047.

  12. X.L. Yang, Y.S. Ye, Z.M. Wang, Z.H. Zhang, Y.L. Zhao, F. Yang, Z.Y. Zhu, and T. Wei, POM-based MOF-derived Co3O4/CoMoO4 nanohybrids as anodes for high-performance lithium-ion batteries, ACS Omega, 5(2020), No. 40, p. 26230.

    Article  CAS  Google Scholar 

  13. X.Y. Yang, T. Wei, J.S. Li, N. Sheng, P.P. Zhu, J.Q. Sha, T. Wang, and Y.Q. Lan, Polyoxometalate-incorporated metall-apillararene/metallacalixarene metal-organic frameworks as anode materials for lithium ion batteries, Inorg. Chem., 56(2017), No. 14, p. 8311.

    Article  CAS  Google Scholar 

  14. M. Zhang, T. Wei, A.M. Zhang, S.L. Li, F.C. Shen, L.Z. Dong, D.S. Li, and Y.Q. Lan, Polyoxomolybdate-polypyrrole/reduced graphene oxide nanocomposite as high-capacity electrodes for lithium storage, ACS Omega, 2(2017), No. 9, p. 5684.

    Article  CAS  Google Scholar 

  15. Y. Cheng, L.Q. Zhang, Q.B. Zhang, J. Li, Y.F. Tang, C. de Delmas, T. Zhu, M. Winter, M.S. Wang, and J.Y. Huang, Understanding all solid-state lithium batteries through in situ transmission electron microscopy, Mater. Today, 42(2021), p. 137.

    Article  CAS  Google Scholar 

  16. Z.M. Zheng, H.H. Wu, H.D. Liu, Q.B. Zhang, X. He, S.C. Yu, V. Petrova, J. Feng, R. Kostecki, P. Liu, D.L. Peng, M.L. Liu, and M.S. Wang, Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets, ACS Nano, 14(2020), No. 8, p. 9545.

    Article  CAS  Google Scholar 

  17. Z.M. Zheng, P. Li, J.S. Huang, H.D. Liu, Y. Zao, Z.L. Hu, L. Zhang, H.X. Chen, M.S. Wang, D.L. Peng, and Q.B. Zhang, High performance columnar-like Fe2O3@carbon composite anode via yolk@shell structural design, J. Energy Chem., 41(2020), p. 126.

    Article  Google Scholar 

  18. Q.P. Yu, D. Han, Q.W. Lu, Y.B. He, S. Li, Q. Liu, C.P. Han, F.Y. Kang, and B.H. Li, Constructing effective interfaces for Li1.5Al0.5Ge1.5(PO4)3 pellets to achieve room-temperature hybrid solid-state lithium metal batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 10, p. 9911.

    Article  CAS  Google Scholar 

  19. H. Xie, C.P. Yang, K. Fu, Y.G. Yao, F. Jiang, E. Hitz, B.Y. Liu, S. Wang, and L.B. Hu, Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose, Adv. Energy Mater., 8(2018), No. 18, art. No. 1703474.

  20. H. Zhang, C.M. Li, M. Piszcz, E. Coya, T. Rojo, L.M. Rodriguez-Martinez, M. Armand, and Z.B. Zhou, Single lithium-ion conducting solid polymer electrolytes: Advances and perspectives, Chem. Soc. Rev., 46(2017), No. 3, p. 797.

    Article  CAS  Google Scholar 

  21. E.Q. Zhao, Y.D. Guo, G.R. Xu, L. Yuan, J.C. Liu, X.B. Li, L. Yang, J.J. Ma, Y.C. Li, and S.M. Fan, High ionic conductivity Y doped Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte, J. Alloys Compd., 782(2019), p. 384.

    Article  CAS  Google Scholar 

  22. W.P. Zha, F. Chen, D.J. Yang, Q. Shen, and L.M. Zhang, High-performance Li6.4La3Zr1.4Ta0.6O12/poly(ethylene oxide)/succinonitrile composite electrolyte for solid-state lithium batteries, J. Power Sources, 397(2018), p. 87.

    Article  CAS  Google Scholar 

  23. L. Luo, J.Y. Li, H.Y. Asl, and A. Manthiram, A 3D lithiophilic Mo2N-modified carbon nanofiber architecture for dendrite-free lithium-metal anodes in a full cell, Adv. Mater., 31(2019), No. 48, art. No. 1904537.

  24. M.S. Zhang, R.J. Liu, Z.K. Wang, X.Y. Xing, Y.G. Liu, B.B. Deng, and T. Yang, Electrolyte additive maintains high performance for dendrite-free lithium metal anode, Chin. Chem. Lett., 31(2020), No. 5, p. 1217.

    Article  CAS  Google Scholar 

  25. L.H. Xu, G.B. Li, J.X. Guan, L.L. Wang, J.T. Chen, and J.R. Zheng, Garnet-doped composite polymer electrolyte with high ionic conductivity for dendrite-free lithium batteries, J. Energy Storage, 24(2019), art. No. 100767.

  26. F. Guo, Y.L. Wang, T. Kang, C.H. Liu, Y.B. Shen, W. Lu, X.D. Wu, and L.W. Chen, A Li-dual carbon composite as stable anode material for Li batteries, Energy Storage Mater., 15(2018), p. 116.

    Article  Google Scholar 

  27. S.K. Tian, B.W. Shao, Z.Q. Wang, S.D. Li, X.Y. Liu, Y.B. Zhao, and L. Li, Organic ionic plastic crystal as electrolyte for lithium-oxygen batteries, Chin. Chem. Lett., 30(2019), No. 6, p. 1289.

    Article  CAS  Google Scholar 

  28. D. Zhou, A. Tkacheva, X. Tang, B. Sun, D. Shanmukaraj, P. Li, F. Zhang, M. Armand, and G.X. Wang, Stable conversion chemistry-based lithium metal batteries enabled by hierarchical multifunctional polymer electrolytes with near-single ion conduction, Angew. Chem. Int. Ed., 58(2019), No. 18, p. 6001.

    Article  CAS  Google Scholar 

  29. Y. Xia, X.L. Wang, X.H. Xia, R.C. Xu, S.Z. Zhang, J.B. Wu, Y.F. Liang, C.D. Gu, and J.P. Tu, A newly designed composite gel polymer electrolyte based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for enhanced solid-state lithium-sulfur batteries, Chem. Eur. J., 23(2017), No. 60, p. 15203.

    Article  CAS  Google Scholar 

  30. J.Y. He, J.Q. Liu, J. Li, Y.Q. Lai, and X.F. Wu, Enhanced ionic conductivity and electrochemical capacity of lithium ion battery based on PVDF-HFP/HDPE membrane, Mater. Lett., 170(2016), p. 126.

    Article  CAS  Google Scholar 

  31. W.D. Zhou, S.F. Wang, Y.T. Li, S. Xin, A. Manthiram, and J.B. Goodenough, Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte, J. Am. Chem. Soc., 138(2016), No. 30, p. 9385.

    Article  CAS  Google Scholar 

  32. H.Y. Huo, B. Wu, T. Zhang, X.S. Zheng, L. Ge, T.W. Xu, X.X. Guo, and X.L. Sun, Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries, Energy Storage Mater., 18(2019), p. 59.

    Article  Google Scholar 

  33. K. Kerman, A. Luntz, V. Viswanathan, Y.M. Chiang, and Z.B. Chen, Review—Practical challenges hindering the development of solid state Li ion batteries, J. Electrochem. Soc., 164(2017), No. 7, p. A1731.

    Article  CAS  Google Scholar 

  34. C.L. Berhaut, R. Dedryvère, L. Timperman, G. Schmidt, D. Lemordant, and M. Anouti, A new solvent mixture for use of LiTDI as electrolyte salt in Li-ion batteries, Electrochim. Acta, 305(2019), p. 534.

    Article  CAS  Google Scholar 

  35. K.W. Liu, C.F. Cheng, L.Y. Zhou, F. Zou, W.F. Liang, M.Y. Wang, and Y. Zhu, A shear thickening fluid based impact resistant electrolyte for safe Li-ion batteries, J. Power Sources, 423(2019), p. 297.

    Article  CAS  Google Scholar 

  36. X.B. Cheng, C.Z. Zhao, Y.X. Yao, H. Liu, and Q. Zhang, Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes, Chem, 5(2019), No. 1, p. 74.

    Article  CAS  Google Scholar 

  37. S.J. Zhang, J.H. You, J.D. Chen, Y.Y. Hu, C.W. Wang, Q. Liu, Y.Y. Li, Y. Zhou, J.T. Li, J. Šwiatowska, L. Huang, and S.G. Sun, Aluminum-based metal-organic frameworks derived Al2O3-loading mesoporous carbon as a host matrix for lithium-metal anodes, ACS Appl. Mater. Interfaces, 11(2019), No. 51, p. 47939.

    Article  CAS  Google Scholar 

  38. M.Q. Zhu, B. Li, S.M. Li, Z.G. Du, Y.J. Gong, and S.B. Yang, Dendrite-free metallic lithium in lithiophilic carbonized metal-organic frameworks, Adv. Energy Mater., 8(2018), No. 18, art. No. 1703505.

  39. X.Y. Ban, W.Q. Zhang, N. Chen, and C.W. Sun, A high-performance and durable poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium battery, J. Phys. Chem. C, 122(2018), No. 18, p. 9852.

    Article  CAS  Google Scholar 

  40. Y.H. Cho, J. Wolfenstine, E. Rangasamy, H. Kim, H. Choe, and J. Sakamoto, Mechanical properties of the solid Li-ion conducting electrolyte: Li0.33La0.57TiO3, J. Mater. Sci., 47(2012), No. 16, p. 5970.

    Article  CAS  Google Scholar 

  41. A. Miura, N.C. Rosero-Navarro, A. Sakuda, K. Tadanaga, N.H.H. Phuc, A. Matsuda, N. Machida, A. Hayashi, and M. Tatsumisago, Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery, Nat. Rev. Chem., 3(2019), No. 3, p. 189.

    Article  CAS  Google Scholar 

  42. N. Zhao, W. Khokhar, Z.J. Bi, C. Shi, X.X. Guo, L.Z. Fan, and C.W. Nan, Solid garnet batteries, Joule, 3(2019), No. 5, p. 1190.

    Article  CAS  Google Scholar 

  43. L. Fan, S.Y. Wei, S.Y. Li, Q. Li, and Y.Y. Lu, Recent progress of the solid-state electrolytes for high-energy metal-based batteries, Adv. Energy Mater., 8(2018), No. 11, art. No. 1702657.

  44. M. Shoji, E.J. Cheng, T. Kimura, and K. Kanamura, Recent progress for all solid state battery using sulfide and oxide solid electrolytes, J. Phys. D: Appl. Phys., 52(2019), No. 10, art. No. 103001.

  45. H. Yokokawa, Thermodynamic stability of sulfide electrolyte/oxide electrode interface in solid-state lithium batteries, Solid State Ionics, 285(2016), p. 126.

    Article  CAS  Google Scholar 

  46. J. Ko, D.H. Cho, D.J. Kim, and Y.S. Yoon, Suppression of formation of lithium dendrite via surface modification by 2-D lithium phosphorous oxynitride as a highly stable anode for metal lithium batteries, J. Alloys Compd., 845(2020), art. No. 156280.

  47. Q.B. Zhang, Z.L. Gong, and Y. Yang, Advance in interface and characterizations of sulfide solid electrolyte materials, Acta Phys. Sin., 69(2020), No. 22, art. No. 228803.

  48. G.Y. Adachi, N. Imanaka, and H. Aono, Fast Li+ conducting ceramic electrolytes, Adv. Mater., 8(1996), No. 2, p. 127.

    Article  CAS  Google Scholar 

  49. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G.Y. Adachi, Ionic conductivity of solid electrolytes based on lithium titanium phosphate, J. Electrochem. Soc., 137(1990), No. 4, p. 1023.

    Article  CAS  Google Scholar 

  50. Y.T. Li, W.D. Zhou, X. Chen, X.J. Lü, Z.M. Cui, S. Xin, L.G. Xue, Q.X. Jia, and J.B. Goodenough, Mastering the interface for advanced all-solid-state lithium rechargeable batteries, PNAS, 113(2016), No. 47, p. 13313.

    Article  CAS  Google Scholar 

  51. V. Thangadurai, S. Narayanan, and D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review, Chem. Soc. Rev., 43(2014), No. 13, p. 4714.

    Article  CAS  Google Scholar 

  52. S. Kim, M. Hirayama, K. Suzuki, and R. Kanno, Hetero-epitaxial growth of Li0.17La0.61TiO3 solid electrolyte on LiMn2O4 electrode for all solid-state batteries, Solid State Ionics, 262(2014), p. 578.

    Article  CAS  Google Scholar 

  53. Y.S. Zhao and L.L. Daemen, Superionic conductivity in lithium-rich anti-perovskites, J. Am. Chem. Soc., 134(2012), No. 36, p. 15042.

    Article  CAS  Google Scholar 

  54. Y.T. Li, W.D. Zhou, S. Xin, S. Li, J.L. Zhu, X.J. Lü, Z.M. Cui, Q.X. Jia, J.S. Zhou, Y.S. Zhao, and J.B. Goodenough, Fluorine-doped antiperovskite electrolyte for all-solid-state lithium-ion batteries, Angew. Chem. Int. Ed., 55(2016), No. 34, p. 9965.

    Article  CAS  Google Scholar 

  55. R. Murugan, V. Thangadurai, and W. Weppner, Lithium ion conductivity of Li5+xBaxLa3−xTa2O12 (x=0–2) with garnet-related structure in dependence of the barium content, Ionics, 13(2007), No. 4, p. 195.

    Article  CAS  Google Scholar 

  56. M. Kotobuki, H. Munakata, K. Kanamura, Y. Sato, and T. Yoshida, Compatibility of Li7La3Zr2O12 solid electrolyte to all-solid-state battery using Li metal anode, J. Electrochem. Soc., 157(2010), No. 10, p. A1076.

    Article  CAS  Google Scholar 

  57. J. Awaka, A. Takashima, K. Kataoka, N. Kijima, Y. Idemoto, and J. Akimoto, Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12, Chem. Lett., 40(2011), No. 1, p. 60.

    Article  CAS  Google Scholar 

  58. C.W. Sun, J. Liu, Y.D. Gong, D.P. Wilkinson, and J.J. Zhang, Recent advances in all-solid-state rechargeable lithium batteries, Nano Energy, 33(2017), p. 363.

    Article  CAS  Google Scholar 

  59. Q.Q. Zhang, K. Liu, F. Ding, and X.J. Liu, Recent advances in solid polymer electrolytes for lithium batteries, Nano Res., 10(2017), No. 12, p. 4139.

    Article  Google Scholar 

  60. Ö.U. Kudu, T. Famprikis, B. Fleutot, M.D. Braida, T. Le Mercier, M.S. Islam, and C. Masquelier, A review of structural properties and synthesis methods of solid electrolyte materials in the Li2S-P2S5 binary system, J. Power Sources, 407(2018), p. 31.

    Article  CAS  Google Scholar 

  61. Z.X. Zhang, L. Zhang, X.L. Yan, H.Q. Wang, Y.Y. Liu, C. Yu, X.T. Cao, L. van Eijck, and B. Wen, All-in-one improvement toward Li6PS5Br-based solid electrolytes triggered by compositional tune, J. Power Sources, 410–411(2019), p. 162.

    Article  CAS  Google Scholar 

  62. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, and A. Mitsui, A lithium superionic conductor, Nat. Mater., 10(2011), No. 9, p. 682.

    Article  CAS  Google Scholar 

  63. M. Zhu, J.X. Wu, Y. Wang, M.M. Song, L. Long, S.H. Siyal, X.P. Yang, and G. Sui, Recent advances in gel polymer electrolyte for high-performance lithium batteries, J. Energy Chem., 37(2019), p. 126.

    Article  Google Scholar 

  64. C.K. Chan, T. Yang, and J.M. Weller, Nanostructured garnet-type Li7La3Zr2O12: Synthesis, properties, and opportunities as electrolytes for Li-ion batteries, Electrochim. Acta, 253(2017), p. 268.

    Article  CAS  Google Scholar 

  65. S.A. Yoon, N.R. Oh, A.R. Yoo, H.G. Lee, and H.C. Lee, Preparation and characterization of Ta-substituted Li7La3Zr2−xO12 garnet solid electrolyte by sol-gel processing, J. Korean Ceram. Soc., 54(2017), No. 4, p. 278.

    Article  CAS  Google Scholar 

  66. Y.Q. Li, Z. Wang, C.L. Li, Y. Cao, and X.X. Guo, Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering, J. Power Sources, 248(2014), p. 642.

    Article  CAS  Google Scholar 

  67. N. Yu, C.L. Shao, Y.C. Liu, H.Y. Guan, and X.H. Yang, Nanofibers of LiMn2O4 by electrospinning, J. Colloid Interface Sci., 285(2005), No. 1, p. 163.

    Article  CAS  Google Scholar 

  68. T. Yang, Z.D. Gordon, Y. Li, and C.K. Chan, Nanostructured garnet-type solid electrolytes for lithium batteries: Electrospinning synthesis of Li7La3Zr2O12 nanowires and particle size-dependent phase transformation, J. Phys. Chem. C, 119(2015), No. 27, p. 14947.

    Article  CAS  Google Scholar 

  69. D. Van Opdenbosch and C. Zollfrank, Cellulose-based biotemplated silica structuring, Adv. Eng. Mater., 16(2014), No. 6, p. 699.

    Article  CAS  Google Scholar 

  70. Z.D. Gordon, T. Yang, G.B. Gomes Morgado, and C.K. Chan, Preparation of nano- and microstructured garnet Li7La3Zr2O12 solid electrolytes for Li-ion batteries via cellulose templating, ACS Sustainable Chem. Eng., 4(2016), No. 12, p. 6391.

    Article  CAS  Google Scholar 

  71. N. Bernstein, M.D. Johannes, and K. Hoang, Origin of the structural phase transition in Li7La3Zr2O12, Phys. Rev. Lett., 109(2012), No. 20, art. No. 205702.

  72. J. Awaka, N. Kijima, H. Hayakawa, and J. Akimoto, Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure, J. Solid State Chem., 182(2009), No. 8, p. 2046.

    Article  CAS  Google Scholar 

  73. R. Murugan, V. Thangadurai, and W. Weppner, Fast lithium ion conduction in garnet-type Li7La3Zr2O12, Angew. Chem. Int. Ed., 46(2007), No. 41, p. 7778.

    Article  CAS  Google Scholar 

  74. J.F. Wu, W.K. Pang, V.K. Peterson, L. Wei, and X. Guo, Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries, ACS Appl. Mater. Interfaces, 9(2017), No. 14, p. 12461.

    Article  CAS  Google Scholar 

  75. F.M. Du, N. Zhao, Y.Q. Li, C. Chen, Z.W. Liu, and X.X. Guo, All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes, J. Power Sources, 300(2015), p. 24.

    Article  CAS  Google Scholar 

  76. T. Krauskopf, H. Hartmann, W.G. Zeier, and J. Janek, Toward a fundamental understanding of the lithium metal anode in solid-state batteries—An electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12, ACS Appl. Mater. Interfaces, 11(2019), No. 15, p. 14463.

    Article  CAS  Google Scholar 

  77. N.C. Rosero-Navarro, T. Yamashita, A. Miura, M. Higuchi, and K. Tadanaga, Effect of sintering additives on relative density and Li-ion conductivity of Nb-doped Li7La3ZrO12 solid electrolyte, J. Am. Ceram. Soc., 100(2017), No. 1, p. 276.

    Article  CAS  Google Scholar 

  78. S.D. Song, B.T. Chen, Y.L. Ruan, J. Sun, L.M. Yu, Y. Wang, and J. Thokchom, Gd-doped Li7La3Zr2O12 garnet-type solid electrolytes for all-solid-state Li-ion batteries, Electrochim. Acta, 270(2018), p. 501.

    Article  CAS  Google Scholar 

  79. D. Rettenwander, C.A. Geiger, and G. Amthauer, Synthesis and crystal chemistry of the fast Li-ion conductor Li7La3Zr2O12 doped with Fe, Inorg. Chem., 52(2013), No. 14, p. 8005.

    Article  CAS  Google Scholar 

  80. C. Bernuy-Lopez, W. Manalastas, J.M.L. del Amo, A. Aguadero, F. Aguesse, and J.A. Kilner, Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics, Chem. Mater., 26(2014), No. 12, p. 3610.

    Article  CAS  Google Scholar 

  81. I. Quinzeni, D. Capsoni, V. Berbenni, P. Mustarelli, M. Sturini, and M. Bini, Stability of low-temperature Li7La3Zr2O12 cubic phase: The role of temperature and atmosphere, Mater. Chem. Phys., 185(2017), p. 55.

    Article  CAS  Google Scholar 

  82. M. Kotobuki, K. Kanamura, Y. Sato, and T. Yoshida, Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte, J. Power Sources, 196(2011), No. 18, p. 7750.

    Article  CAS  Google Scholar 

  83. S. Kobi and A. Mukhopadhyay, Structural (in)stability and spontaneous cracking of Li-La-zirconate cubic garnet upon exposure to ambient atmosphere, J. Eur. Ceram. Soc., 38(2018), No. 14, p. 4707.

    Article  CAS  Google Scholar 

  84. V. Thangadurai, D. Pinzaru, S. Narayanan, and A.K. Baral, Fast solid-state Li ion conducting garnet-type structure metal oxides for energy storage, J. Phys. Chem. Lett., 6(2015), No. 2, p. 292.

    Article  CAS  Google Scholar 

  85. F.D. Han, Y.Z. Zhu, X.F. He, Y.F. Mo, and C.S. Wang, Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes, Adv. Energy Mater., 6(2016), No. 8, art. No. 1501590.

  86. Y.Z. Zhu, X.F. He, and Y.F. Mo, Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations, ACS Appl. Mater. Interfaces, 7(2015), No. 42, p. 23685.

    Article  CAS  Google Scholar 

  87. H.N. Duan, H.P. Zheng, Y. Zhou, B.Y. Xu, and H.Z. Liu, Stability of garnet-type Li ion conductors: An overview, Solid State Ionics, 318(2018), p. 45.

    Article  CAS  Google Scholar 

  88. A. Dumon, M. Huang, Y. Shen, and C.W. Nan, High Li ion conductivity in strontium doped Li7La3Zr2O12 garnet, Solid State Ionics, 243(2013), p. 36.

    Article  CAS  Google Scholar 

  89. S.Y. Cao, S.B. Song, X. Xiang, Q. Hu, C. Zhang, Z.W. Xia, Y.H. Xu, W.P. Zha, J.Y. Li, P.M. Gonzale, Y.H. Han, and F. Chen, Modeling, preparation, and elemental doping of Li7La3Zr2O12 garnet-type solid electrolytes: A review, J. Korean Ceram. Soc., 56(2019), No. 2, p. 111.

    Article  CAS  Google Scholar 

  90. S. Ramakumar, L. Satyanarayana, S.V. Manorama, and R. Murugan, Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors, Phys. Chem. Chem. Phys., 15(2013), No. 27, p. 11327.

    Article  CAS  Google Scholar 

  91. Z.L. Hu, H.D. Liu, H.B. Ruan, R. Hu, Y.Y. Su, and L. Zhang, High Li-ion conductivity of Al-doped Li7La3Zr2O12 synthesized by solid-state reaction, Ceram. Int., 42(2016), No. 10, p. 12156.

    Article  CAS  Google Scholar 

  92. C. Im, D. Park, H. Kim, and J. Lee, Al-incorporation into Li7La3Zr2O12 solid electrolyte keeping stabilized cubic phase for all-solid-state Li batteries, J. Energy Chem., 27(2018), No. 5, p. 1501.

    Article  Google Scholar 

  93. Y.Q. Li, Z. Wang, Y. Cao, F.M. Du, C. Chen, Z.H. Cui, and X.X. Guo, W-doped Li7La3Zr2O12 ceramic electrolytes for solid state Li-ion batteries, Electrochim. Acta, 180(2015), p. 37.

    Article  CAS  Google Scholar 

  94. Y. Shimonishi, A. Toda, T. Zhang, A. Hirano, N. Imanishi, O. Yamamoto, and Y. Takeda, Synthesis of garnet-type Li7−xLa3Zr2O12−1/2x and its stability in aqueous solutions, Solid State Ionics, 183(2011), No. 1, p. 48.

    Article  CAS  Google Scholar 

  95. X.S. Wang, J. Liu, R. Yin, Y.C. Xu, Y.H. Cui, L. Zhao, and X.B. Yu, High lithium ionic conductivity of garnet-type oxide Li7+xLa3Zr2−xSmxO12 (x=0–0.1) ceramics, Mater. Lett., 231(2018), p. 43.

    Article  CAS  Google Scholar 

  96. J.L. Gai, E.Q. Zhao, F.R. Ma, D.Y. Sun, X.D. Ma, Y.C. Jin, Q.L. Wu, and Y.J. Cui, Improving the Li-ion conductivity and air stability of cubic Li7La3Zr2O12 by the co-doping of Nb, Y on the Zr site, J. Eur. Ceram. Soc., 38(2018), No. 4, p. 1673.

    Article  CAS  Google Scholar 

  97. C. Monroe and J. Newman, The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces, J. Electrochem. Soc., 152(2005), No. 2, p. A396.

    Article  CAS  Google Scholar 

  98. S. Yu, R.D. Schmidt, R. Garcia-Mendez, E. Herbert, N.J. Dudney, J.B. Wolfenstine, J. Sakamoto, and D.J. Siegel, Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO), Chem. Mater., 28(2016), No. 1, p. 197.

    Article  CAS  Google Scholar 

  99. C.L. Tsai, E. Dashjav, E.M. Hammer, M. Finsterbusch, F. Tietz, S. Uhlenbruck, and H.P. Buchkremer, High conductivity of mixed phase Al-substituted Li7La3Zr2O12, J. Electroceram., 35(2015), No. 1–4, p. 25.

    Article  CAS  Google Scholar 

  100. M. Huang, A. Dumon, and C.W. Nan, Effect of Si, In and Ge doping on high ionic conductivity of Li7La3Zr2O12, Electrochem. Commun., 21(2012), p. 62.

    Article  CAS  Google Scholar 

  101. Y.T. Li, J.T. Han, C.A. Wang, H. Xie, and J.B. Goodenough, Optimizing Li+ conductivity in a garnet framework, J. Mater. Chem, 22(2012), No. 30, p. 15357.

    Article  CAS  Google Scholar 

  102. Y. Meesala, Y.K. Liao, A. Jena, N.H. Yang, W.K. Pang, S.F. Hu, H. Chang, C.E. Liu, S.C. Liao, J.M. Chen, X.X. Guo, and R.S. Liu, An efficient multi-doping strategy to enhance Li-ion conductivity in the garnet-type solid electrolyte Li7La3Zr2O12, J. Mater. Chem. A, 7(2019), No. 14, p. 8589.

    Article  CAS  Google Scholar 

  103. S. Bonizzoni, C. Ferrara, V. Berbenni, U. Anselmi-Tamburini, P. Mustarelli, and C. Tealdi, NASICON-type polymer-in-ceramic composite electrolytes for lithium batteries, Phys. Chem. Chem. Phys., 21(2019), No. 11, p. 6142.

    Article  CAS  Google Scholar 

  104. J. Zheng and Y.Y. Hu, New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes, ACS Appl. Mater. Interfaces, 10(2018), No. 4, p. 4113.

    Article  CAS  Google Scholar 

  105. F. Chen, W.P. Zha, D.J. Yang, S.Y. Cao, Q. Shen, L.M. Zhang, and D.R. Sadoway, All-solid-state lithium battery fitted with polymer electrolyte enhanced by solid plasticizer and conductive ceramic filler, J. Electrochem. Soc., 165(2018), No. 14, p. A3558.

    Article  CAS  Google Scholar 

  106. E. Quartarone and P. Mustarelli, Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives, Chem. Soc. Rev., 40(2011), No. 5, p. 2525.

    Article  CAS  Google Scholar 

  107. W.Q. Zhang, J.H. Nie, F. Li, Z.L. Wang, and C.W. Sun, A durable and safe solid-state lithium battery with a hybrid electrolyte membrane, Nano Energy, 45(2018), p. 413.

    Article  CAS  Google Scholar 

  108. T.L. Jiang, P.G. He, G.X. Wang, Y. Shen, C.W. Nan, and L.Z. Fan, Lithium batteries: Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries, Adv. Energy Mater., 10(2020), No. 12, art. No. 1903376.

  109. H.T.T. Le, D.T. Ngo, R.S. Kalubarme, G.Z. Cao, C.N. Park, and C.J. Park, Composite gel polymer electrolyte based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) with modified aluminum-doped lithium lanthanum titanate (ALLTO) for high-performance lithium rechargeable batteries, ACS Appl. Mater. Interfaces, 8(2016), No. 32, p. 20710.

    Article  CAS  Google Scholar 

  110. A.I. Pitillas Martinez, F. Aguesse, L. Otaegui, M. Schneider, A. Roters, A. Llordés, and L. Buannic, The cathode composition, a key player in the success of Li-metal solid-state batteries, J. Phys. Chem. C, 123(2019), No. 6, p. 3270.

    Article  CAS  Google Scholar 

  111. T. Stergiopoulos, I.M. Arabatzis, G. Katsaros, and P. Falaras, Binary polyethylene oxide/titania solid-state redox electrolyte for highly efficient nanocrystalline TiO2 photoelectrochemical cells, Nano Lett., 2(2002), No. 11, p. 1259.

    Article  CAS  Google Scholar 

  112. S.W. Choi, S.M. Jo, W.S. Lee, and Y.R. Kim, An electrospun poly(vinylidene fluoride) nanofibrous membrane and its battery applications, Adv. Mater., 15(2003), No. 23, p. 2027.

    Article  CAS  Google Scholar 

  113. H.P. Wang, H.T. Huang, and S.L. Wunder, Novel microporous poly(vinylidene fluoride) blend electrolytes for lithium-ion batteries, J. Electrochem. Soc., 147(2000), No. 8, p. 2853.

    Article  CAS  Google Scholar 

  114. K. Jeddi, M. Ghaznavi, and P. Chen, A novel polymer electrolyte to improve the cycle life of high performance lithium-sulfur batteries, J. Mater. Chem. A, 1(2013), No. 8, p. 2769.

    Article  CAS  Google Scholar 

  115. G.X. Jiang, S. Maeda, H.B. Yang, Y. Saito, S. Tanase, and T. Sakai, All solid-state lithium-polymer battery using poly(urethane acrylate)/nano-SiO2 composite electrolytes, J. Power Sources, 141(2005), No. 1, p. 143.

    Article  CAS  Google Scholar 

  116. P. Raghavan, J. Manuel, X.H. Zhao, D.S. Kim, J.H. Ahn, and C. Nah, Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries, J. Power Sources, 196(2011), No. 16, p. 6742.

    Article  CAS  Google Scholar 

  117. J. Zheng, M.X. Tang, and Y.Y. Hu, Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes, Angew. Chem. Int. Ed, 55(2016), No. 40, p. 12538.

    Article  CAS  Google Scholar 

  118. D. Brogioli, F. Langer, R. Kun, and F.L. Mantia, Space-charge effects at the Li7La3Zr2O12/poly(ethylene oxide) interface, ACS Appl. Mater. Interfaces, 11(2019), No. 12, p. 11999.

    Article  CAS  Google Scholar 

  119. K. Jeong, S. Park, and S.Y. Lee, Revisiting polymeric single lithium-ion conductors as an organic route for all-solid-state lithium ion and metal batteries, J. Mater. Chem. A, 7(2019), No. 5, p. 1917.

    Article  CAS  Google Scholar 

  120. W. Liu, N. Liu, J. Sun, P.C. Hsu, Y.Z. Li, H.W. Lee, and Y. Cui, Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers, Nano Lett., 15(2015), No. 4, p. 2740.

    Article  CAS  Google Scholar 

  121. Y.H. Zhu, J. Cao, H. Chen, Q.P. Yu, and B.H. Li, High electrochemical stability of a 3D cross-linked network PEO@nano-SiO2 composite polymer electrolyte for lithium metal batteries, J. Mater. Chem. A, 7(2019), No. 12, p. 6832.

    Article  CAS  Google Scholar 

  122. L. Chen, Y.T. Li, S.P. Li, L.Z. Fan, C.W. Nan, and J.B. Goodenough, PEO/garnet composite electrolytes for solidstate lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”, Nano Energy, 46(2018), p. 176.

    Article  CAS  Google Scholar 

  123. A.M. Christie, S.J. Lilley, E. Staunton, Y.G. Andreev, and P.G. Bruce, Increasing the conductivity of crystalline polymer electrolytes, Nature, 433(2005), No. 7021, p. 50.

    Article  CAS  Google Scholar 

  124. A.L. Agapov and A.P. Sokolov, Decoupling ionic conductivity from structural relaxation: A way to solid polymer electrolytes?, Macromolecules, 44(2011), No. 11, p. 4410.

    Article  CAS  Google Scholar 

  125. C.C. Yang, Z.Y. Lian, S.J. Lin, J.Y. Shih, and W.H. Chen, Preparation and application of PVDF-HFP composite polymer electrolytes in LiNi0.5Co0.2Mn0.3O2 lithium-polymer batteries, Electrochim. Acta, 134(2014), p. 258.

    Article  CAS  Google Scholar 

  126. Y.X. Jiang, Z.F. Chen, Q.C. Zhuang, J.M. Xu, Q.F. Dong, L. Huang, and S.G. Sun, A novel composite microporous polymer electrolyte prepared with molecule sieves for Li-ion batteries, J. Power Sources, 160(2006), No. 2, p. 1320.

    Article  CAS  Google Scholar 

  127. Y. Li, W. Zhang, Q.Q. Dou, K.W. Wong, and K.M. Ng, Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries, J. Mater. Chem. A, 7(2019), No. 7, p. 3391.

    Article  CAS  Google Scholar 

  128. J. Lu, Y.C. Liu, P.H. Yao, Z.Y. Ding, Q.M. Tang, J.W. Wu, Z.R. Ye, K. Huang, and X.J. Liu, Hybridizing poly(vinylidene fluoride-co-hexafluoropropylene) with Li6.5La3Zr1.5Ta0.5O12 as a lithium-ion electrolyte for solid state lithium metal batteries, Chem. Eng. J., 367(2019), p. 230.

    Article  CAS  Google Scholar 

  129. F. Langer, M.S. Palagonia, I. Bardenhagen, J. Glenneberg, F.L. Mantia, and R. Kun, Impedance spectroscopy analysis of the lithium ion transport through the Li7La3Zr2O12/P(EO)20Li interface, J. Electrochem. Soc., 164(2017), No. 12, p. A2298.

    Article  CAS  Google Scholar 

  130. T. Wei, Z.H. Zhang, Z.M. Wang, Q. Zhang, Y.S. Ye, J.H. Lu, Z.U. Rahman, and Z.W. Zhang, Ultrathin solid composite electrolyte based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTFSI/succinonitrile for high-performance solid-state lithium metal batteries, ACS Appl. Energy Mater., 3(2020), No. 9, p. 9428.

    Article  CAS  Google Scholar 

  131. V. Aravindan, P. Vickraman, A. Sivashanmugam, R. Thirunakaran, and S. Gopukumar, Comparison among the performance of LiBOB, LiDFOB and LiFAP impregnated polyvinylidenefluoride-hexafluoropropylene nanocomposite membranes by phase inversion for lithium batteries, Curr. Appl. Phys., 13(2013), No. 1, p. 293.

    Article  Google Scholar 

  132. J.S. Gnanaraj, E. Zinigrad, M.D. Levi, D. Aurbach, and M. Schmidt, A comparison among LiPF6, LiPF3(CF2CF3)3 (Li-FAP), and LiN(SO2CF2CF3)2 (LiBETI) solutions: Electrochemical and thermal studies, J. Power Sources, 119–121(2003), p. 799.

    Article  CAS  Google Scholar 

  133. S.E. Sloop, J.K. Pugh, S. Wang, J.B. Kerr, and K. Kinoshita, Chemical reactivity of PF5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions, Electrochem, Solid-State Lett., 4(2001), No. 4, p. A42.

    Article  CAS  Google Scholar 

  134. R.J. Chen, F. Liu, Y. Chen, Y.S. Ye, Y.X. Huang, F. Wu, and L. Li, An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries, J. Power Sources, 306(2016), p. 70.

    Article  CAS  Google Scholar 

  135. S. Das, S. Mitra, J. Combet, R. Mukhopadhyay, and A.J. Bhattacharyya, Study of solvent relaxation of pristine succinonitrile and succinonitrile-salt mixtures using quasielastic neutron scattering, Solid State Ionics, 279(2015), p. 72.

    Article  CAS  Google Scholar 

  136. G. Larraz, A. Orera, and M.L. Sanjuán, Cubic phases of garnet-type Li7La3Zr2O12: The role of hydration, J. Mater. Chem. A, 1(2013), No. 37, p. 11419.

    Article  CAS  Google Scholar 

  137. Y. Jin and P.J. McGinn, Li7La3Zr2O12 electrolyte stability in air and fabrication of a Li/Li7La3Zr2O12/Cu0.1V2O5 solid-state battery, J. Power Sources, 239(2013), p. 326.

    Article  CAS  Google Scholar 

  138. A. Sharafi, S. Yu, M. Naguib, M. Lee, C. Ma, H.M. Meyer, J. Nanda, M. Chi, D.J. Siegel, and J. Sakamoto, Impact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance, J. Mater. Chem. A, 5(2017), No. 26, p. 13475.

    Article  CAS  Google Scholar 

  139. L. Cheng, E.J. Crumlin, W. Chen, R.M. Qiao, H.M. Hou, S.F. Lux, V. Zorba, R. Russo, R. Kostecki, Z. Liu, K. Persson, W.L. Yang, J. Cabana, T. Richardson, G.Y. Chen, and M. Doeff, The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes, Phys. Chem. Chem. Phys., 16(2014), No. 34, p. 18294.

    Article  CAS  Google Scholar 

  140. L. Cheng, C.H. Wu, A. Jarry, W. Chen, Y.F. Ye, J.F. Zhu, R. Kostecki, K. Persson, J.H. Guo, M. Salmeron, G.Y. Chen, and M. Doeff, Interrelationships among grain size, surface composition, air stability, and interfacial resistance of Al-substituted Li7La3Zr2O12 solid electrolytes, ACS Appl. Mater. Interfaces, 7(2015), No. 32, p. 17649.

    Article  CAS  Google Scholar 

  141. Y.T. Li, X. Chen, A. Dolocan, Z.M. Cui, S. Xin, L.G. Xue, H.H. Xu, K. Park, and J.B. Goodenough, Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries, J. Am. Chem. Soc., 140(2018), No. 20, p. 6448.

    Article  CAS  Google Scholar 

  142. T. Wei, Z.H. Zhang, Z.Y. Zhu, X.P. Zhou, Y.Y. Wang, Y.Z. Wang, and Q.C. Zhuang, Recycling of waste plastics and scalable preparation of Si/CNF/C composite as anode material for lithium-ion batteries, Ionics, 25(2019), No. 4, p. 1523.

    Article  CAS  Google Scholar 

  143. A. Sharafi, E. Kazyak, A.L. Davis, S. Yu, T. Thompson, D.J. Siegel, N.P. Dasgupta, and J. Sakamoto, Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12, Chem. Mater., 29(2017), No. 18, p. 7961.

    Article  CAS  Google Scholar 

  144. X. Shen, X.B. Cheng, P. Shi, J.Q. Huang, X.Q. Zhang, C. Yan, T. Li, and Q. Zhang, Lithium-matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries, J. Energy Chem., 37(2019), p. 29.

    Article  Google Scholar 

  145. W. Luo, Y.H. Gong, Y.Z. Zhu, Y.J. Li, Y.G. Yao, Y. Zhang, K. Fu, G. Pastel, C.F. Lin, Y.F. Mo, E.D. Wachsman, and L.B. Hu, Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer, Adv. Mater., 29(2017), No. 22, art. No. 1606042.

  146. K. Park, B.C. Yu, J.W. Jung, Y.T. Li, W.D. Zhou, H.C. Gao, S. Son, and J.B. Goodenough, Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: Interface between LiCoO2 and garnet-Li7La3Zr2O12, Chem. Mater., 28(2016), No. 21, p. 8051.

    Article  CAS  Google Scholar 

  147. K. Yan, Z.D. Lu, H.W. Lee, F. Xiong, P.C. Hsu, Y.Z. Li, J. Zhao, S. Chu, and Y. Cui, Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth, Nat. Energy, 1(2016), art. No. 16010.

  148. S. Ohta, T. Kobayashi, J. Seki, and T. Asaoka, Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte, J. Power Sources, 202(2012), p. 332.

    Article  CAS  Google Scholar 

  149. J. van den Broek, S. Afyon, and J.L.M. Rupp, Interface-engineered all-solid-state Li-ion batteries based on garnet-type fast Li+ conductors, Adv. Energy Mater., 6(2016), No. 19, art. No. 1600736.

  150. R. Raj and J. Wolfenstine, Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries, J. Power Sources, 343(2017), p. 119.

    Article  CAS  Google Scholar 

  151. M. Trybula, T. Gancarz, W. Gasior, and A. Pasturel, Bulk and surface properties of liquid Al-Li and Li-Zn alloys, Metall. Mater. Trans. A, 45(2014), No. 12, p. 5517.

    Article  CAS  Google Scholar 

  152. J. Duan, W.Y. Wu, A.M. Nolan, T.R. Wang, J.Y. Wen, C.C. Hu, Y.F. Mo, W. Luo, and Y.H. Huang, Lithium-graphite paste: An interface compatible anode for solid-state batteries, Adv. Mater., 31(2019), No. 10, art. No. 1807243.

  153. C.W. Wang, H. Xie, L. Zhang, Y.H. Gong, G. Pastel, J.Q. Dai, B.Y. Liu, E.D. Wachsman, and L.B. Hu, Universal soldering of lithium and sodium alloys on various substrates for batteries, Adv. Energy Mater., 8(2018), No. 6, art. No. 1701963.

  154. G. Vardar, W.J. Bowman, Q.Y. Lu, J.Y. Wang, R.J. Chater, A. Aguadero, R. Seibert, J. Terry, A. Hunt, I. Waluyo, D.D. Fong, A. Jarry, E.J. Crumlin, S.L. Hellstrom, Y.M. Chiang, and B. Yildiz, Structure, chemistry, and charge transfer resistance of the interface between Li7La3Zr2O12 electrolyte and LiCoO2 cathode, Chem. Mater., 30(2018), No. 18, p. 6259.

    Article  CAS  Google Scholar 

  155. S. Ohta, J. Seki, Y. Yagi, Y. Kihira, T. Tani, and T. Asaoka, Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery, J. Power Sources, 265(2014), p. 40.

    Article  CAS  Google Scholar 

  156. V. Thangadurai and W. Weppner, Investigations on electrical conductivity and chemical compatibility between fast lithium ion conducting garnet-like Li6BaLa2Ta2O12 and lithium battery cathodes, J. Power Sources, 142(2005), No. 1–2, p. 339.

    Article  CAS  Google Scholar 

  157. F.D. Han, J. Yue, C. Chen, N. Zhao, X.L. Fan, Z.H. Ma, T. Gao, F. Wang, X.X. Guo, and C.S. Wang, Interphase engineering enabled all-ceramic lithium battery, Joule, 2(2018), No. 3, p. 497.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21701083 and 51801078), the Zhenjiang Key Laboratory of Marine Power Equipment Performance (No. SS2018006), the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Nos. SJCX19_0612 and KYCX20_3137), and the Project of Jiangsu University (High-Tech Ship) Collaborative Innovation Center (No. 2019, 1174871801-11).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Wei or Liu-ting Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Zh., Wei, T., Lu, Jh. et al. Practical development and challenges of garnet-structured Li7La3Zr2O12 electrolytes for all-solid-state lithium-ion batteries: A review. Int J Miner Metall Mater 28, 1565–1583 (2021). https://doi.org/10.1007/s12613-020-2239-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2239-1

Keywords

Navigation