Skip to main content
Log in

Controlled crystal orientation of two-dimensional Ruddlesden—Popper halide perovskite films for solar cells

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Metal halide perovskite solar cells have attracted considerable attention because of their high-power conversion efficiency and cost-effective solution-processable fabrication; however, they exhibit poor structural stability. Two-dimensional (2D) Ruddlesden—Popper (RP) perovskites could address the aforementioned issue and present excellent stability because of their hydrophobic organic spacer cations. However, the crystallographic orientation of 2D crystals should be perpendicular to the bottom substrates for charges to transport fast and be collected in solar cells. Moreover, controlling the crystallographic orientation of the 2D RP perovskites prepared by the solution process is difficult. Herein, we reviewed the progress of recent research regarding 2D RP perovskite films with the focus on the crystallographic orientation mechanism and orientation controlling methods. Furthermore, the current issues and prospects of 2D RP perovskites in the photovoltaic field were discussed to elucidate their development and application in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Huang, M.J. Li, P. Siffalovic, G.Z. Cao, and J.J. Tian, From scalable solution fabrication of perovskite films towards commercialization of solar cells, Energy Environ. Sci., 12(2019), No. 2, p. 518.

    Article  CAS  Google Scholar 

  2. A.Q. Liu, C.H. Bi, R.Q. Guo, M.Q. Zhang, X.H. Qu, and J.J. Tian, Electroluminescence principle and performance improvement of metal halide perovskite light-emitting diodes, Adv. Opt. Mater., 9(2021), No. 18, art. No. 2002167.

  3. H. Kim, K.G. Lim, and T.W. Lee, Planar heterojunction organometal halide perovskite solar cells: Roles of interfacial layers, Energy Environ. Sci., 9(2016), No. 1, p. 12.

    Article  CAS  Google Scholar 

  4. C.H. Bi, Z.W. Yao, X.J. Sun, X.C. Wei, J.X. Wang, and J.J. Tian, Perovskite quantum dots with ultralow trap density by acid etching-driven ligand exchange for high luminance and stable pure-blue light-emitting diodes, Adv. Mater., 33(2021), No. 15, art. No. 2006722.

  5. C.F. Liu, J.F. Yuan, R. Masse, et al., Interphases, interfaces, and surfaces of active materials in rechargeable batteries and perovskite solar cells, Adv. Mater., 33(2021), No. 22, art. No. 1905245.

  6. V. D’Innocenzo, G. Grancini, M.J.P. Alcocer, et al., Excitons versus free charges in organo-lead tri-halide perovskites, Nat. Commun., 5(2014), art. No. 3586.

  7. B. Li, D. Binks, G.Z. Cao, and J.J. Tian, Engineering halide perovskite crystals through precursor chemistry, Small, 15(2019), No. 47, art. No. 1903613.

  8. C.H. Bi, X.J. Sun, X. Huang, et al., Stable CsPb1−xZnxI3 colloidal quantum dots with ultralow density of trap states for high-performance solar cells, Chem. Mater., 32(2020), No. 14, p. 6105.

    Article  CAS  Google Scholar 

  9. T. Yang, Y.P. Zheng, K.C. Chou, and X.M. Hou, Tunable fabrication of single-crystalline CsPbI3 nanobelts and their application as photodetectors, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 1030.

    Article  CAS  Google Scholar 

  10. D.W. De Quilettes, S.M. Vorpahl, S.D. Stranks, et al, Impact of microstructure on local carrier lifetime in perovskite solar cells, Science, 348(2015), No. 6235, p. 683.

    Article  CAS  Google Scholar 

  11. J.H. Zheng, L.X. Zhu, Z.T. Shen, et al., Effects of the incorporation amount of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells, Int. J. Miner. Metall. Mater., (2021). DOI:https://doi.org/10.1007/s12613-021-2316-0

  12. D. Zhang, J.F. Yuan, and J.J. Tian, All-inorganic perovskite solar cells with efficiency >20%, Sci. China Mater., 64(2021), No. 10, p. 2624.

    Article  CAS  Google Scholar 

  13. H.Y. Zhang, R. Li, W.W. Liu, M. Zhang, and M. Guo, Research progress in lead-less or lead-free three-dimensional perovskite absorber materials for solar cells, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 387.

    Article  CAS  Google Scholar 

  14. D. Weber, CH3NH3PbX3, ein Pb(II)-system mit kubischer perowskitstruktur/CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure, Z. Naturforsch. B, 33(1978), No. 12, p. 1443.

    Article  Google Scholar 

  15. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131(2009), No. 17, p. 6050.

    Article  CAS  Google Scholar 

  16. H.S. Kim, C.R. Lee, J.H. Im, et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep., 2(2012), art. No. 591.

  17. X.Z. Yu, Y. Qin, and Q. Peng, Probe decomposition of methylammonium lead iodide perovskite in N2 and O2 by in situ infrared spectroscopy, J. Phys. Chem. A, 121(2017), No. 6, p. 1169.

    Article  CAS  Google Scholar 

  18. Y.P. Xia, P.H. Wang, S.W. Shi, et al., Effect of oxygen partial pressure and transparent substrates on the structural and optical properties of ZnO thin films and their performance in energy harvesters, Int. J. Miner. Metall. Mater., 24(2017), No. 6, p. 675.

    Article  CAS  Google Scholar 

  19. G. Tumen-Ulzii, C.J. Qin, D. Klotz, et al., Detrimental effect of unreacted PbI2 on the long-term stability of perovskite solar cells, Adv. Mater., 32(2020), No. 16, art. No. 1905035.

  20. H.T. Wei, S.S. Chen, J.J. Zhao, Z.H. Yu, and J.S. Huang, Is formamidinium always more stable than methylammonium?, Chem. Mater., 32(2020), No. 6, p. 2501.

    Article  CAS  Google Scholar 

  21. L. McGovern, I. Koschany, G. Grimaldi, L.A. Muscarella, and B. Ehrler, Grain size influences activation energy and migration pathways in MAPbBr3 perovskite solar cells, J. Phys. Chem. Lett., 12(2021), No. 9, p. 2423.

    Article  CAS  Google Scholar 

  22. P. Chen, Y. Bai, S.C. Wang, M.Q. Lyu, J.H. Yun, and L.Z. Wang, In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells, Adv. Funct. Mater., 28(2018), No. 17, art. No. 1706923.

  23. J. Zhuang, P. Mao, Y.G. Luan, et al., Interfacial passivation for perovskite solar cells: The effects of the functional group in phenethylammonium iodide, ACS Energy Lett., 4(2019), No. 12, p. 2913.

    Article  CAS  Google Scholar 

  24. C.L. Zhang, S.H. Wu, L.M. Tao, et al., Fabrication strategy for efficient 2D/3D perovskite solar cells enabled by diffusion passivation and strain compensation, Adv. Energy Mater., 10(2020), No. 43, art. No. 2002004.

  25. Y.H. Wu, Y. Ding, X.Y. Liu, et al., Ambient stable FAPbI3-based perovskite solar cells with a 2D-EDAPbI4 thin capping layer, Sci. China Mater., 63(2020), No. 1, p. 47.

    Article  CAS  Google Scholar 

  26. H.Y. Zheng, S.Y. Dai, K.X. Zhou, et al., New-type highly stable 2D/3D perovskite materials: The effect of introducing ammonium cation on performance of perovskite solar cells, Sci. China Mater., 62(2019), No. 4, p. 508.

    Article  CAS  Google Scholar 

  27. Y.H. Liu, S. Akin, A. Hinderhofer, et al., Stabilization of highly efficient and stable phase-pure FAPbI3 perovskite solar cells by molecularly tailored 2D-overlayers, Angew. Chem. Int. Ed., 59(2020), No. 36, p. 15688.

    Article  CAS  Google Scholar 

  28. C.T. Zuo, A.D. Scully, W.L. Tan, et al, Crystallisation control of drop-cast quasi-2D/3D perovskite layers for efficient solar cells, Commun. Mater., 1(2020), art. No. 33.

  29. Y. Li, J.V. Milić, A. Ummadisingu, et al, Bifunctional organic spacers for formamidinium-based hybrid Dion—Jacobson two-dimensional perovskite solar cells, Nano Lett., 19(2019), No. 1, p. 150.

    Article  CAS  Google Scholar 

  30. B.E. Cohen, Y.M. Li, Q.B. Meng, and L. Etgar, Dion—Jacobson two-dimensional perovskite solar cells based on benzene dimethanammonium cation, Nano Lett., 19(2019), No. 4, p. 2588.

    Article  CAS  Google Scholar 

  31. F.Z. Li, J. Zhang, S.B. Jo, et al., Vertical orientated Dion—Jacobson quasi-2D perovskite film with improved photovoltaic performance and stability, Small Methods, 4(2020), No. 5, art. No. 1900831.

  32. D. Lu, G.W. Lv, Z.Y. Xu, Y.X. Dong, X.F. Ji, and Y.S. Liu, Thiophene-based two-dimensional Dion—Jacobson perovskite solar cells with over 15% efficiency, J. Am. Chem. Soc., 142(2020), No. 25, p. 11114.

    Article  CAS  Google Scholar 

  33. H.T. Wu, X.M. Lian, S.X. Tian, et al., Additive assisted hotcasting free fabrication of Dion-Jacobson 2D perovskite solar cell with efficiency beyond 16%, Sol. RRL, 4(2020), No. 7, art. No. 2000087.

  34. W.D. Zhao, Q.S. Dong, J.W. Zhang, et al., Asymmetric alkyl diamine based Dion—Jacobson low-dimensional perovskite solar cells with efficiency exceeding 15%, J. Mater. Chem. A, 8(2020), No. 19, p. 9919.

    Article  CAS  Google Scholar 

  35. H. Wang, Z.T. Qin, J.S. Xie, et al., Efficient slantwise aligned Dion—Jacobson phase perovskite solar cells based on trans-1, 4-cyclohexanediamine, Small, 16(2020), No. 42, art. No. 2003098.

  36. J. Kim, W. Lee, K. Cho, et al., Crystallinity-dependent device characteristics of polycrystalline 2D n = 4 Ruddlesden—Popper perovskite photodetectors, Nanotechnol., 32(2021), No. 18, art. No. 185203.

  37. B. Hwang, Y. Park, and J.S. Lee, Impact of grain size on the optoelectronic performance of 2D Ruddlesden—Popper perovskite-based photodetectors, J. Mater. Chem. C, 9(2021), No. 1, p. 110.

    Article  CAS  Google Scholar 

  38. G. Jang, S. Ma, H.C. Kwon, et al., Elucidation of the formation mechanism of highly oriented multiphase Ruddlesden—Popper perovskite solar cells, ACS Energy Lett., 6(2021), No. 1, p. 249.

    Article  CAS  Google Scholar 

  39. J.S. Shi, X. Jin, Y.Z. Wu, and M. Shao, Mixed bulky cations for efficient and stable Ruddlesden—Popper perovskite solar cells, APL Mater., 8(2020), No. 10, art. No. 101102.

  40. X.L. Tang, X.Y. Wang, T. Hu, et al., Concerted regulation on vertical orientation and film quality of two-dimensional Ruddlesden—Popper perovskite layer for efficient solar cells, Sci. China Chem., 63(2020), No. 11, p. 1675.

    Article  CAS  Google Scholar 

  41. J.M. Yang, S.B. Xiong, J.N. Song, et al., Energetics and energy loss in 2D Ruddlesden—Popper perovskite solar cells, Adv. Energy Mater., 10(2020), No. 23, art. No. 2000687.

  42. Y. Qin, H.J. Zhong, J.J. Intemann, et al., Coordination engineering of single-crystal precursor for phase control in Ruddlesden—Popper perovskite solar cells, Adv. Energy Mater., 10(2020), No. 16, art. No. 1904050.

  43. S.N. Ruddlesden and P. Popper, New compounds of the K2NIF4 type, Acta Cryst., 10(1957), No. 8, p. 538.

    Article  CAS  Google Scholar 

  44. I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, and H.I. Karunadasa, A layered hybrid perovskite solar-cell absorber with enhanced moisture stability, Angew. Chem. Int. Ed., 53(2014), No. 42, p. 11232.

    Article  CAS  Google Scholar 

  45. T. Zhang, M.I. Dar, G. Li, et al., Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells, Sci. Adv., 3(2017), No. 9, art. No. e1700841.

  46. L. Etgar, The merit of perovskite’s dimensionality; can this replace the 3D halide perovskite, Energy Environ. Sci., 11(2018), No. 2, p. 234.

    Article  CAS  Google Scholar 

  47. S. Yang, Y. Wang, P.R. Liu, Y.B. Cheng, H.J. Zhao, and H.G. Yang, Functionalization of perovskite thin films with moisture-tolerant molecules, Nat. Energy, 1(2016), art. No. 15016.

  48. H.J. Jung, C.C. Stompus, M.G. Kanatzidis, and V.P. Dravid, Self-passivation of 2D Ruddlesden—Popper perovskite by polytypic surface PbI2 encapsulation, Nano Lett., 19(2019), No. 9, p. 6109.

    Article  CAS  Google Scholar 

  49. Y. Lin, Y. Bai, Y.J. Fang, Q. Wang, Y.H. Deng, and J.S. Huang, Suppressed ion migration in low-dimensional perovskites, ACS Energy Lett., 2(2017), No. 7, p. 1571.

    Article  CAS  Google Scholar 

  50. G.B. Wu, T.H. Yang, X. Li, et al., Molecular engineering for two-dimensional perovskites with photovoltaic efficiency exceeding 18%, Matter, 4(2021), No. 2, p. 582.

    Article  CAS  Google Scholar 

  51. R. Yang, R.Z. Li, Y. Cao, et al, Oriented quasi-2D perovskites for high performance optoelectronic devices, Adv. Mater., 30(2018), No. 51, art. No. 1804771.

  52. Y. Yang, C. Liu, O.A. Syzgantseva, et al., Defect suppression in oriented 2D perovskite solar cells with efficiency over 18% via rerouting crystallization pathway, Adv. Energy Mater., 11(2021), No. 1, art. No. 2002966.

  53. H.T. Lai, D. Lu, Z.Y. Xu, N. Zheng, Z.Q. Xie, and Y.S. Liu, Organic-salt-assisted crystal growth and orientation of quasi-2D Ruddlesden—Popper perovskites for solar cells with efficiency over 19%, Adv. Mater., 32(2020), No. 33, art. No. 2001470.

  54. D.H. Cao, C.C. Stoumpos, O.K. Farha, J.T. Hupp, and M.G. Kanatzidis, 2D homologous perovskites as light-absorbing materials for solar cell applications, J. Am. Chem. Soc., 137(2015), No. 24, p. 7843.

    Article  CAS  Google Scholar 

  55. J.Z. Li, J. Wang, Y.J. Zhang, et al., Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation, 2D Mater., 5(2018), No. 2, art. No. 021001.

  56. L.N. Quan, M.J. Yuan, R. Comin, et al., Ligand-stabilized reduced-dimensionality perovskites, J. Am. Chem. Soc., 138(2016), No. 8, p. 2649.

    Article  CAS  Google Scholar 

  57. C.C. Stoumpos, D.H. Cao, D.J. Clark, et al, Ruddlesden—Popper hybrid lead iodide perovskite 2D homologous semiconductors, Chem. Mater., 28(2016), No. 8, p. 2852.

    Article  CAS  Google Scholar 

  58. W.J. Wei, X.X. Jiang, L.Y. Dong, et al., Regulating second-harmonic generation by van der Waals interactions in two-dimensional lead halide perovskite nanosheets, J. Am. Chem. Soc., 141(2019), No. 23, p. 9134.

    Article  Google Scholar 

  59. X. Hong, T. Ishihara, and A.V. Nurmikko, Dielectric confinement effect on excitons in PbI4-based layered semiconductors, Phys. Rev. B, 45(1992), No. 12, p. 6961.

    Article  CAS  Google Scholar 

  60. D.H. Cao, C.C. Stoumpos, T. Yokoyama, et al., Thin films and solar cells based on semiconducting two-dimensional Ruddlesden—Popper (CH3(CH2)3NH3)2(CH3NH3)n−1SnnI3n+1 perovskites, ACS Energy Lett., 2(2017), No. 5, p. 982.

    Article  CAS  Google Scholar 

  61. A.Z. Chen, M. Shiu, J.H. Ma, et al, Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance, Nat. Commun., 9(2018), art. No. 1336.

  62. M. Konstantakou, D. Perganti, P. Falaras, and T. Stergiopoulos, Anti-solvent crystallization strategies for highly efficient perovskite solar cells, Crystals, 7(2017), No. 10, art. No. 291.

  63. M. Zhang, Z.H. Wang, B. Zhou, et al., Green anti-solvent processed planar perovskite solar cells with efficiency beyond 19%, Sol. RRL, 2(2018), No. 2, art. No. 1700213.

  64. Y.F. Wang, J. Wu, P. Zhang, et al., Stitching triple cation perovskite by a mixed anti-solvent process for high performance perovskite solar cells, Nano Energy, 39(2017), p. 616.

    Article  CAS  Google Scholar 

  65. D. Prochowicz, M.M. Tavakoli, A. Solanki, et al., Understanding the effect of chlorobenzene and isopropanol anti-solvent treatments on the recombination and interfacial charge accumulation in efficient planar perovskite solar cells, J. Mater. Chem. A, 6(2018), No. 29, p. 14307.

    Article  CAS  Google Scholar 

  66. Y. Li, J.A. Wang, Y. Yuan, X.D. Dong, and P. Wang, Anti-solvent dependent device performance in CH3NH3PbI3 solar cells: The role of intermediate phase content in the as-prepared thin films, Sustainable Energy Fuels, 1(2017), No. 5, p. 1041.

    Article  CAS  Google Scholar 

  67. Y.X. Dong, D. Lu, Z.Y. Xu, H.T. Lai, and Y.S. Liu, 2-thiopheneformamidinium-based 2D Ruddlesden-Popper perovskite solar cells with efficiency of 16.72% and negligible hysteresis, Adv. Energy Mater., 10(2020), No. 28, art. No. 2000694.

  68. M.J. Li, B. Li, G.Z. Cao, and J.J. Tian, Monolithic MAPbI3 films for high-efficiency solar cells via coordination and a heat assisted process, J. Mater. Chem. A, 5(2017), No. 40, p. 21313.

    Article  CAS  Google Scholar 

  69. H.C. Liao, P.J. Guo, C.P. Hsu, et al., Enhanced efficiency of hot-cast large-area planar perovskite solar cells/modules having controlled chloride incorporation, Adv. Energy Mater., 7(2017), No. 8, art. No. 1601660.

  70. W.Y. Nie, H. Tsai, R. Asadpour, et al., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Science, 347(2015), No. 6221, p. 522.

    Article  CAS  Google Scholar 

  71. Z. Wang, X.D. Liu, Y.W. Lin, et al, Hot-substrate deposition of all-inorganic perovskite films for low-temperature processed high-efficiency solar cells, J. Mater. Chem. A, 7(2019), No. 6, p. 2773.

    Article  CAS  Google Scholar 

  72. G.B. Wu, J.Y. Zhou, J.Q. Zhang, et al, Management of the crystallization in two-dimensional perovskite solar cells with enhanced efficiency within a wide temperature range and high stability, Nano Energy, 58(2019), p. 706.

    Article  CAS  Google Scholar 

  73. G.S. Shin, W.G. Choi, S. Na, F.P. Gökdemir, and T. Moon, Lead acetate based hybrid perovskite through hot casting for planar heterojunction solar cells, Electron. Mater. Lett., 14(2018), No. 2, p. 155.

    Article  CAS  Google Scholar 

  74. H. Tsai, W.Y. Nie, J.C. Blancon, et al, High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells, Nature, 536(2016), No. 7616, p. 312.

    Article  CAS  Google Scholar 

  75. F.D. Wang, Y.Y. Wang, Y.H. Liu, P.J. Morrison, R.A. Loomis, and W.E. Buhro, Two-dimensional semiconductor nanocrystals: Properties, templated formation, and magic-size nanocluster intermediates, Acc. Chem. Res., 48(2015), No. 1, p. 13.

    Article  Google Scholar 

  76. A. Riedinger, F.D. Ott, A. Mule, et al., An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets, Nat. Mater., 16(2017), No. 7, p. 743.

    Article  CAS  Google Scholar 

  77. R. Quintero-Bermudez, A. Gold-Parker, A.H. Proppe, et al., Compositional and orientational control in metal halide perovskites of reduced dimensionality, Nat. Mater., 17(2018), No. 10, p. 900.

    Article  CAS  Google Scholar 

  78. S.Y. Shao, H. Duim, Q.Q. Wang, et al., Tuning the energetic landscape of Ruddlesden—Popper perovskite films for efficient solar cells, ACS Energy Lett., 5(2020), No. 1, p. 39.

    Article  CAS  Google Scholar 

  79. J. Zhang, J.J. Qin, M.S. Wang, et al., Uniform permutation of quasi-2D perovskites by vacuum poling for efficient, high-fill-factor solar cells, Joule, 3(2019), No. 12, p. 3061.

    Article  CAS  Google Scholar 

  80. X.M. Zhao, T.R. Liu, A.B. Kaplan, C. Yao, and Y.L. Loo, Accessing highly oriented two-dimensional perovskite films via solvent-vapor annealing for efficient and stable solar cells, Nano Lett., 20(2020), No. 12, p. 8880.

    Article  CAS  Google Scholar 

  81. X.Q. Zhang, G. Wu, W.F. Fu, et al., Orientation regulation of phenylethylammonium cation based 2D perovskite solar cell with efficiency higher than 11%, Adv. Energy Mater., 8(2018), No. 14, art. No. 1702498.

  82. W.F. Fu, J. Wang, L.J. Zuo, et al., Two-dimensional perovskite solar cells with 14.1% power conversion efficiency and 0.68% external radiative efficiency, ACS Energy Lett., 3(2018), No. 9, p. 2086.

    Article  CAS  Google Scholar 

  83. F. Huang, P. Siffalovic, B. Li, et al., Controlled crystallinity and morphologies of 2D Ruddlesden—Popper perovskite films grown without anti-solvent for solar cells, Chem. Eng. J., 394(2020), art. No. 124959.

  84. F. Zheng, C.T. Zuo, M.S. Niu, et al., Revealing the role of methylammonium chloride for improving the performance of 2D perovskite solar cells, ACS Appl. Mater. Interfaces, 12(2020), No. 23, p. 25980.

    Article  CAS  Google Scholar 

  85. C.M.M. Soe, W.Y. Nie, C.C. Stoumpos, et al., Understanding film formation morphology and orientation in high member 2D Ruddlesden—Popper perovskites for high-efficiency solar cells, Adv. Energy Mater., 8(2018), No. 1, art. No. 1700979.

  86. J. Qiu, Y.T. Zheng, Y.D. Xia, et al., Rapid crystallization for efficient 2D Ruddlesden—Popper (2DRP) perovskite solar cells, Adv. Funct. Mater., 29(2019), No. 47, art. No. 1806831.

  87. X. Zhang, X.D. Ren, B. Liu, et al., Stable high efficiency two-dimensional perovskite solar cells via cesium doping, Energy Environ. Sci., 10(2017), No. 10, p. 2095.

    Article  CAS  Google Scholar 

  88. N. Zhou, Y.H. Shen, L. Li, et al., Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells, J. Am. Chem. Soc., 140(2018), No. 1, p. 459.

    Article  CAS  Google Scholar 

  89. J.S. Shi, Y.R. Gao, X. Gao, et al., Fluorinated low-dimensional Ruddlesden—Popper perovskite solar cells with over 17% power conversion efficiency and improved stability, Adv. Mater., 31(2019), No. 37, art. No. 1901673.

  90. H. Ren, S.D. Yu, L.F. Chao, et al., Efficient and stable Ruddlesden—Popper perovskite solar cell with tailored interlayer molecular interaction, Nat. Photonics, 14(2020), No. 3, p. 154.

    Article  CAS  Google Scholar 

  91. Y.N. Chen, Y. Sun, J.J. Peng, et al., Tailoring organic cation of 2D air-stable organometal halide perovskites for highly efficient planar solar cells, Adv. Energy Mater., 7(2017), No. 18, art. No. 1700162.

  92. N. Zhou, B.L. Huang, M.Z. Sun, et al., The spacer cations interplay for efficient and stable layered 2D perovskite solar cells, Adv. Energy Mater., 10(2020), No. 1, art. No. 1901566.

  93. C. Liang, H. Gu, Y.D. Xia, et al., Two-dimensional Ruddlesden—Popper layered perovskite solar cells based on phase-pure thin films, Nat. Energy, 6(2021), No. 1, p. 38.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2017YFE0119700) and the National Natural Science Foundation of China (Nos. 51961135107, 51774034, and 5177 2026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Tian.

Additional information

Conflict of Interest

The authors declared that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Zhang, M. & Tian, J. Controlled crystal orientation of two-dimensional Ruddlesden—Popper halide perovskite films for solar cells. Int J Miner Metall Mater 29, 49–58 (2022). https://doi.org/10.1007/s12613-021-2341-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2341-z

Keywords

Navigation