Skip to main content
Log in

Synthesis of Cubic Nanocrystalline Silicon Carbide (3C-SiC) Films by HW-CVD Method

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Cubic nanocrystalline silicon carbide (3C-SiC) films have been deposited by using the hot wire chemical vapor deposition (HW-CVD) method at a low substrate temperature and at high deposition rate. Structural, optical and electrical properties of these films have been investigated as a function of H2 dilution ratio. The formation of 3C-SiC films has been confirmed from low angle XRD analysis, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, x-ray photoelectron spectroscopy (XPS) and dark and photoconductivity measurements. The FTIR spectroscopy analysis revealed that the bond densities of Si-H and C-H decrease while that of Si-C increases with increase in the H2 dilution ratio. The total hydrogen content decreases with increase in H2 dilution ratio and was found < 15 at. % over the entire range of H2 dilution ratio studied whereas the band gap show an increasing trend with increase in the H2 dilution ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang X, Zhao-hui C, Feng C (2014). J Asian Ceram Soc 2:305–309

    Article  Google Scholar 

  2. Chen T, Huang Y, Dasgupta A, Luysberg M, Houben L, Yang D, Carius R, Finger F (2012). Sol Energy Mater Sol Cells 98:370–378

    Article  CAS  Google Scholar 

  3. Fuchs F, Soltamov V, Vath S, Baranov P, Mokhov E, Astakhov G, Dyakonov V (2013). Sci Rep 3(1-4):1637

    CAS  Google Scholar 

  4. Windischmann H (1991). J Vac Sci Technol A 9:2459–2463

    Article  CAS  Google Scholar 

  5. Marsi P (1998). Surf Sci Rep 48:1–51

    Google Scholar 

  6. Li S, Cao Y, Xu J, Rui Y, Li W, Chen K (2013). Appl Surf Sci 270:287–291

    Article  CAS  Google Scholar 

  7. Ricciardi C, Fanchini G, Mandracci P (2003). Diamond Relat Mater 12:1236–1240

    Article  CAS  Google Scholar 

  8. Singh A, Chandra S, Kumar S, Bose G (2012). J Micromech Microeng 22(2):025010

    Article  Google Scholar 

  9. Filipescu M, Velisa G, Ion V, Andrei A, Scintee N, Ionescu P, Stanciu S, Pantelica D, Dinescu M (2011). J Nucl Mater 416:18–21

    Article  CAS  Google Scholar 

  10. Wang Q, Fu S, Qu S, Liu W (2007). Solid State Commun 144:277–281

    Article  CAS  Google Scholar 

  11. Verucchi R, Aversa L, Nardi M, Taioli S, Beccara S, Alfe D, Nasi L, Rossi F, Salviati G, Iannotta S (2012). J Am Chem Soc 134:17400–17403

    Article  CAS  Google Scholar 

  12. Mandracci P (2001) Ph. D Thesis, Trento University, Italy

  13. Jeong S, Nam D, Kim B, Yoon J, Lee M, Kim K, Yoon Y, Seo W (2014). Appl Phys Express 7(2):025501

    Article  Google Scholar 

  14. Yang X, Zhao-hui C, Feng C (2014). J Asian Ceram Soc 2:305–309

    Article  Google Scholar 

  15. Panda S, Sengupta J, Jacob C (2010). J Nanosci Nanotechnol 10:3046–3052

    Article  CAS  Google Scholar 

  16. Ricciardi C, Primiceli A, Germani G, Rusconi A, Giorgis F (2006). J Non-Cryst Solids 352:1380–1383

    Article  CAS  Google Scholar 

  17. Rajagopalan T, Wang X, Lahlouh B, Ramkumar C, Dutta P, Gangopadhyay S (2003). J Appl Phys 94:5252–5260

    Article  CAS  Google Scholar 

  18. Dasgupta A, Klein S, Houben L, Carius R, Finger F, Luysberg M (2008). Thin Solid Films 516:618–621

    Article  CAS  Google Scholar 

  19. Klein S, Carius R, Finger F, Houben L (2006). Thin Solid Films 501:169–172

    Article  CAS  Google Scholar 

  20. Chen T, Huang Y, Yang D, Carius R, Finger F (2011). Thin Solid Films 519:4511–4515

    Article  CAS  Google Scholar 

  21. Chen T, Huang Y, Dasgupta A, Luysberg M, Houben L, Yang D, Carius R, Finger F (2012). Sol Energy Mater Sol Cells 98:370–376

    Article  CAS  Google Scholar 

  22. Miyajima S, Yamada A, Konagai M (2006). Thin Solid Films 501:186–189

    Article  CAS  Google Scholar 

  23. Tabata A, Komura Y (2007). Surf Coat Technol 201:8986–8990

    Article  CAS  Google Scholar 

  24. Tabata A, Komura Y, Narita T, Kondo A (2009). Thin Solid Films 517:3516–3519

    Article  CAS  Google Scholar 

  25. Hoshide Y, Komura Y, Tabata A, Kitagawa A, Kondo A (2009). Thin Solis Films 517:3520–3523

    Article  CAS  Google Scholar 

  26. Tehrani F, Badaruddin M, Rahbari R, Muhamad M, Rahman S (2012). Vacuum 86:1150–1154

    Article  Google Scholar 

  27. Waman V, Kamble M, Pramod M, Funde A, Sathe V, Gosavi S, Jadkar S (2011). J Nano-Electron Phys 3:590–600

    Google Scholar 

  28. Swanepoel R (1983). J Phys E: Sci Instrum 16:1214–1222

    Article  CAS  Google Scholar 

  29. Abrbrosone G, Capezzuto P P, Catalanotti S, Coscia U, Mormone S (2006). Philos Mag B 80(/4):497–506

    Google Scholar 

  30. Mori M, Tabata A, Mizutani T (2006). Thin Solid Films 501:177–180

    Article  CAS  Google Scholar 

  31. Cheng Q, Long J, Ni Z, Rider A, Ostrikov K (2008). J Phys D: Appl Phys 41:055406–055414

    Article  Google Scholar 

  32. Karimi B, Dow A, Kherani N (2013) Proceedings of 5th International Nanoelectronics Conference (INEC), Singapore, p 160

  33. Lucovsky G, Nemanich R, Knights J (1979). Phys Rev B 19:2064

    Article  CAS  Google Scholar 

  34. Tabata A, Kuroda M, Mori M, Mizutani T, Suzuoki Y (2004). J Non-Cryst Solids 338:521–524

    Article  Google Scholar 

  35. Ambrosone G, Capezzuto P, Catalanotti S, Coscia U, Mormone S (2009). Phil Maz B 80:497–506

    Article  Google Scholar 

  36. Kuenle M, Janz S, Eibl O, Berthold C, Presser V, Nickel K (2009). Mater Sci Eng B 159:355–360

    Article  Google Scholar 

  37. Kaneko T, Nemoto D, Horiguchi A, Miyakawa N (2005). J Cryst Growth 275:e1097–e1101

    Article  CAS  Google Scholar 

  38. Ray S, Das D, Barua A (1987). Sol Energy Mater 15:43–57

    Article  Google Scholar 

  39. Basa K, Smith F (1990). Mater Res Soc Symp Proc 162:439

    Article  CAS  Google Scholar 

  40. Shanks H, Faug C, Ley L, Cardona M, Demand F, Kalbitzer S (1980). Phys Status Solidi B 100:43–56

    Article  CAS  Google Scholar 

  41. Liao F, Park S, Larson J, Zachariah M, Girshick S (2003). Mater Lett 57:1982–1986

    Article  CAS  Google Scholar 

  42. Nakashima S, Harima H (1997). Phys Status Solidi A 162:39–64

    Article  CAS  Google Scholar 

  43. Tanaka T, Maruyama E, Shimida T, Okamoto H (1999) Amorphous Silicon John Wiley and Sons Ltd, p 78

  44. Richter H, Wang Z, Ley L (1981). Solid State Commun 39 :625–629

    Article  CAS  Google Scholar 

  45. Swain B, Dusane R (2006). Mater Chem Phys 99:240–246

    Article  CAS  Google Scholar 

  46. Feldman D, Parker J, Choyke W, Patrik L (1968). Phys Rev 173:787–793

    Article  CAS  Google Scholar 

  47. Chen T, Kohler F, Heidt A, Huang Y, Finger F, Carius R (2011). Thin Solid Films 519:4511–4515

    Article  CAS  Google Scholar 

  48. Karch K, Pavone P, Windl W, Shutt O, Strauch D (1994). Phys Rev B 50:17054–17063

    Article  CAS  Google Scholar 

  49. Wu T, Shen H, Cheng B, Pan Y, Liu B, Shen J (2011). Appl Surf Sci 258:999–1003

    Article  CAS  Google Scholar 

  50. Ei Khakani M, Chaker M, Jean J, Boily S, Pepin H, Kieffer J, Gujrathi S (1993). J Appl Phys 74:2834–2840

    Article  Google Scholar 

  51. Soloman I, Schmidt M, Selemaud C, Driss K (1988). Phys Rev B 38:13263–13270

    Article  Google Scholar 

  52. Tauc J, Grigorovici R, Vancu A (1966). Phys Status Solidi 15 :627–637

    Article  CAS  Google Scholar 

  53. Saitoh T, Shimada T, Migitaka M (1983). J Non-Cryst Solids 59:715–718

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandesh Jadkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamble, M., Waman, V., Mayabadi, A. et al. Synthesis of Cubic Nanocrystalline Silicon Carbide (3C-SiC) Films by HW-CVD Method. Silicon 9, 421–429 (2017). https://doi.org/10.1007/s12633-015-9358-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9358-8

Keywords

Navigation