Skip to main content
Log in

Protection Glass Eyewear Against a YAG Laser Based on a Bandpass Absorption Filter

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this article, copper zinc phosphate glass doped with 5 % barium oxide has an amazing optical property due to its application as bandpass filters. Typically, the glass conventional casting with chemical composition 42P2O5–(14- x)Na2O–39ZnO–5BaO–xCu2O where (x = 2, 4, 6, 8 and 10) was formed. The density was measured using the conventional Archimedes method and the molar volume was calculated. The change of glass structure was investigated using X-ray diffraction analysis (XRD). Distinctly, the results revealed that no crystal growth in all glass systems was observed. The density of glass samples was increased whereas the molar volume was decreased with increasing copper content. The absorption, transmission and reflection were measured and some other optical properties were calculated like UV cut-off, and IR cut-off. For instance, the visible cut-off started from 462 to 532 nm while the IR bonds were initiated at 630 to 1200 nm with 6 to 10 % Cu2O concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saeed A, Elbashar YH, El Kameesy SU (2015) Towards modeling of copper-phosphate glass for optical bandpass absorption filter. Res J Pharm Biol Chem Sci (RJPBCS) 6(4):1390–1397

    CAS  Google Scholar 

  2. Ewais EMM, Besisa DHA, El-Amir AAM, El-Sheikh SM, Rayan DE (2015) Optical properties of nanocrystalline magnesium aluminate spinel synthesized from industrial wastes. J Alloys Compd 649:159–166

    Article  CAS  Google Scholar 

  3. Elbashar YH (2015) Structural and spectroscopic analyses of copper doped P2O5-ZnO-K2O-Bi2O3 glasses. Process Appl Ceram 9(3):169–173

    Article  Google Scholar 

  4. Rashad MM, Rayan DA, Turky AO, Hessien MM (2015) Effect of Co 2+ and Y 3+ ions insertion on the microstructure development and magnetic properties of Ni0.5Zn0.5Fe2O4 powders synthesized using co-precipitation method. J Magn Magn Mater 374:359–366

    Article  CAS  Google Scholar 

  5. Saeed A, Elbashar YH, El Kameesy SU (2015) Study of gamma ray attenuation of high-density bismuth silicate glass for shielding applications. Res J Pharm Biol Chem Sci (RJPBCS) 6(4):1830–1837

    CAS  Google Scholar 

  6. Shelby JE (2005) Introduction to glass science and technology, 2nd edn. The Royal Society of Chemistry

  7. Doremus RH (1994) Glass science, 2nd edn. Wiley

  8. Brow RK (2000) Review: the structure of simple phosphate glasses. J. Non-Cryst. Solids 263&264:1–28

    Article  CAS  Google Scholar 

  9. Catauro M, Laudisio G (1999) The non-isothermal devitrification of glasses in the SrO ⋅4GeO2−BaO ⋅4GeO2 composition range. J Therm Anal Calorim 58:617–623

    Article  CAS  Google Scholar 

  10. Elhaes H, Attallah M, Elbashar Y, Ibrahim M, El-Okr M (2014) Application of Cu2O-doped phosphate glasses for bandpass filter. J Phys B Condens Matter 449:251–254

    Article  CAS  Google Scholar 

  11. Rayan DA, Elbashar YH, El Basaty AB, Rashad MM (2015) Infrared spectroscopy of cupric oxide doped barium phosphate glass. Res J Pharm Biol Chem Sci (RJPBCS) 6(3):1026– 1030

    CAS  Google Scholar 

  12. Rashad MM, Rayan DA, El-Barawy K (2010) Hydrothermal synthesis of Mn doped ZnS nanoparticles. J Phys Conf Ser 200:072077

    Article  Google Scholar 

  13. Elhaes H, Attallah M, Elbashar Y, Al-Alousi A, El-Okr M, Ibrahim M (2013) Modeling and optical properties of P2O5-ZnO-CaO-Na2O glasses doped with copper oxide. J Comput Theor Nanosci 11(10):2079–2084

    Article  Google Scholar 

  14. Metwalli E (2003) Copper redox behavior structure and properties of copper lead borate glasses. J Non-Cryst Solids 317:221– 230

    Article  CAS  Google Scholar 

  15. Barczynski RJ, Gazda M, Murawski L (2003) Mixed ionic–polaron transport and rapid crystallization in (Bi,Pb)–Sr–Ca–Cu–O glass. Solid State Ionics 157:299–303

    Article  CAS  Google Scholar 

  16. Metwalli E, Karabulut M, Sidebottom DL, Morsi MM, Brow RK (2004) Properties and structure of copper ultraphosphate glasses. J Non-Cryst Solids 344:128–134

    Article  CAS  Google Scholar 

  17. Miura T, Benino Y, Sato R, Komatsu T (2003) Universal hardness and elastic recovery in Vickers nanoindentation of copper phosphate and silicate glasses. J Eur Ceram Soc 23:409–416

    Article  CAS  Google Scholar 

  18. Aboulfotoh N, Elbashar Y, Ibrahem M, Elokr M (2014) Characterization of copper doped phosphate glasses for optical applications. Ceram Int Part B 40(7):10395–10399

    Article  CAS  Google Scholar 

  19. Vedeanu N, Cozar O, Ardelean I, Lendl B (2006) IR and Raman investigation of x(CuO ⋅V 2O5). (1-x)[P2O5⋅CaF2] glass system. J Optoelectron Adv Mater 8:78–81

    CAS  Google Scholar 

  20. Vedeanu N, Magdas DA, Stefan R (2012) Structural modifications induced by addition of copper oxide to lead–phosphate glasses. J Non-Cryst Solids 358:3170–3174

    Article  CAS  Google Scholar 

  21. Saeed A, El-Shazly RM, Elbashar YH, El-azm AMA, El-Okr MM, Comsan MNH, Osman AM, Abdal-monem AM, El-Sersy AR (2014) Gamma ray attenuation in developed borate glassy. Int J Radiat Phys Chem 102:167–170

    Article  CAS  Google Scholar 

  22. Walter G, Vogel J, Hoppe U, Hartmann P (2003) Structural study of magnesium polyphosphate glasses. J Non-Cryst Solids 320:210–222

    Article  CAS  Google Scholar 

  23. Elbashar YH, Saeed A (2015) Computational spectroscopic analysis by using Clausius–Mossotti method for sodium borate glass doped neodymium oxide. Res J Pharm Biol Chem Sci (RJPBCS) 6(5):320–326

    CAS  Google Scholar 

  24. Nocun M (2004) Structural studies of phosphate glasses with high ionic conductivity. J Non-Cryst Solids 333:90–94

    Article  CAS  Google Scholar 

  25. Sułowska J, Wacławska I, Olejniczak Z (2013) Structural studies of copper-containing multicomponent glasses from the SiO2–P2O5–K2O–CaO–MgO system. J Vib Spectrosc 65:44–49

    Article  Google Scholar 

  26. Leenakul W, Kantha P, Pisitpipathsin N, Rujijanagul G, Eitssayeam S, Pengpat K (2013) Structural and magnetic properties of SiO2–CaO–Na2O–P2O5 containing BaO–Fe2O3 glass–ceramics. J Magn Magn Mater 325:102–106

    Article  CAS  Google Scholar 

  27. Asghar MH, Shoaib M, Placido F, Naseem S (2009) Modeling and preparation of practical optical filters. Current Appl Phys 9:1046–1053

    Article  Google Scholar 

  28. Bessell M (2001) Encyclopedia of astronomy and astrophysics. Nature Publishing Group and Institute of Physics Publishing, UK

    Google Scholar 

  29. Rayan DA, Elbashar YH, Rashad MM, El-Korashy A (2013) Optical spectroscopic analysis of cupric oxide doped barium phosphate glass for bandpass absorption filter. J Non-Cryst Solids 382:52–56

    Article  CAS  Google Scholar 

  30. Sutter E, Schirmacher A (2001) Protective area of laser eye protectors. Opt Laser Technol 33:255–258

    Article  Google Scholar 

  31. Sabatini R, Richardson MA (2003) A new approach to eye-safety analysis for airborne laser systems flight test and training operations. Opt Laser Technol 35:191–198

    Article  Google Scholar 

  32. Sasnett MW (1993) Beam geometry data helps maintain and improve laser processes, (Part 1) Industrial Laser Review, pp 9–13

  33. Sasnett MW (1994) Beam geometry data helps maintain and improve laser processes, (Part 2), Industrial Laser Review, pp 15–16

  34. Choubey A, Jain RK, Ali S, Singh R, Vishwakarma SC, Agrawal DK, Arya R, Kaul R, Upadhyaya BN, Oak SM (2015) Studies on pulsed Nd:YAG laser cutting of thick stainless steel in dry air and underwater environment for dismantling applications. Opt Laser Technol 71:6–15

    Article  CAS  Google Scholar 

  35. Hedwig R, Budi WS, Abdulmadjid SN, Pardede M, Suliyanti MM, Lie TJ, Kurniawan DP, Kurniawan KH, Kagawa K, Tjia MO (2006) Film analysis employing subtarget effect using 355 nm Nd-YAG laser-induced plasma at low pressure. Spectrochim Acta B At Spectrosc 61(12):1285–1293

    Article  Google Scholar 

  36. Rashad MM, Soltan S, Ramadan AA, Bekheet MF, Rayan DA (2015) Investigation of the structural, optical and magnetic properties of CuO/CuFe2O4 nanocomposites synthesized via simple microemulsion method. Ceram Int Part B 41(9):12237– 12245

    Article  CAS  Google Scholar 

  37. Hathaway BJ, Billing DE (1970) The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion. Coord Chem Rev 5:143–207

    Article  CAS  Google Scholar 

  38. Rashad MM, Rayan DA, Ramadan AA (2013) Optical and magnetic properties of CuO/CuFe2O4 nanocomposites. J Mater Sci Mater Electron 24:2742–2749

    Article  CAS  Google Scholar 

  39. Paulose PI, Jose G, Thomas V, Jose G, Unnikrishnan NV, Warrier MKR (2002) Spectroscopic studies of Cu 2+ ions in sol–gel derived silica matrix. Bull Mater Sci 25:69–74

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Rayan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbashar, Y.H., Rashad, M.M. & Rayan, D.A. Protection Glass Eyewear Against a YAG Laser Based on a Bandpass Absorption Filter. Silicon 9, 111–116 (2017). https://doi.org/10.1007/s12633-015-9389-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9389-1

Keywords

Navigation