Skip to main content
Log in

Surface Potential Modeling of Graded-Channel Gate-Stack (GCGS) High-K Dielectric Dual-Material Double-Gate (DMDG) MOSFET and Analog/RF Performance Study

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In each complementary metal-oxide-semiconductor (CMOS) technology generation, design of new device architectures at nanoscale regime becomes quite challenging task due to increased short channel effects (SCEs) and leakage current. A double-gate (DG) MOSFET is an alternative structure. To enhance the performance of DG MOSFET, gate stack (GS) and dual-material gate (DMG) with graded-channel (GC) concepts are amalgamated. Analytical surface potential modeling of GCGS DMDG MOSFET has been done by solving the two-dimensional (2D) Poisson’s equation with suitable boundary conditions. The surface potential profile of GCGS DMDG MOSFET shows a step variation at the interface of two materials. The electrical parameters drain induced barrier lowering (DIBL), sub-threshold swing (SS) and on-current to off-current \(\left (\frac {I_{on}}{I_{off}}\right )\) ratio reveals that, DMDG shows a better performance over single-material (SM) DG MOSFET with all (Si3N4, HfO2 and Ta2O5) GS high-k dielectric configurations. An enhanced performance in GCGS DMDG is due to the fact of increased average carrier velocity, reduced drain field effect and leakage current. Further, analog/RF performance parameters such as transconductance (gm), transconductance generation factor (TGF), cut-off frequency (fT), transconductance generation frequency product (TGFP), gain frequency product (GFP) and gain transconductance frequency product (GTFP) are extracted and compared for both SMDG and DMDG MOSFET with HfO2 GS configuration. The efficacy of analytically modeled results is compared with numerically simulated results obtained from 2D ATLAS device simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robert HD, Fritz HG, Hwa-Nien Y, V Leo R, Ernest B, Ander RL (1974) Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J Solid-State Circ 9:256–268

    Article  Google Scholar 

  2. Mishra UK, Brown AS, Rosenbaum SE (1988) DC and RF performance of 0.1-μm gate length Al0.48As/Ga0.47In0.53As pseudomorphic HEMT, IEDM Technical Digest, pp 180–183

  3. Suzuki K, Tanaka Y, Tosaka Y, Horie H, Arimoto Y, Itoh T (1994) Analytical surface potential expression for thin-film double-gate SOI MOSFET’s. Solid-State Electron 37:327–332

    Article  Google Scholar 

  4. Tsormpatzoglou A, Dimitriadis CA, Clerc R, Pananakakis G, Ghibaudo G (2008) Threshold Voltage Model for Short-Channel Undoped Symmetrical Double-Gate MOSFETs. IEEE Trans Electron Device 55 (9):2512–2516

    Article  Google Scholar 

  5. Pi-Ho Hu V, Fan M-L, Su P, Chuang C-T (2013) Comparative Leakage Analysis of GeOI FinFET and Ge Bulk FinFET. IEEE Trans Electron Device 60(10):3596–3600

    Article  Google Scholar 

  6. Streetman BG (2013) Solid State Electronic Devices, 2nd edn. Prentice-Hall, New York

    Google Scholar 

  7. Veeraraghavan S, Fossum JG (1989) Short-Channel Effects in SOI MOSFET’s. IEEE Trans Electron Device 36(3):522–528

    Article  Google Scholar 

  8. Suzuki K, Tosaka Y, Tanaka T, Horie H, Arimoto Y (1993) Scaling theory of double-gate SOI MOSFET’s. IEEE Trans Electron Devices 40:2326–2329

    Article  CAS  Google Scholar 

  9. Kranti A, Chung TM, Raskin J-P (2005) Analysis of static and dynamic performance of short channel double gate SOI MOSFETs for improved cut-off frequency. Jpn J Appl Phys 44:2340–2346

    Article  CAS  Google Scholar 

  10. Liang X, Taur Y (2004) A 2-D analytical solution for SCEs in DG MOSFETs. IEEE Trans Electron Devices 51(8):1385–1391

    Article  CAS  Google Scholar 

  11. Lim TC, Armstrong GA (2006) The impact of the intrinsic and extrinsic resistances of double gate SOI on RF performance. Solid-State Electron 50:774–783

    Article  CAS  Google Scholar 

  12. Suzuki K, Satoh S, Tanaka T, Ando S (1993) Analytical models for symmetric thin-film double-gate silicon-on-insulator metal-oxide-semiconductor-field-effect-transistors. Jpn J Appl Phys 32:4916–4922

    Article  CAS  Google Scholar 

  13. Lu H, Taur Y (2006) An analytical potential model for symmetric and asymmetric DG MOSFETs. IEEE Trans Electron Devices 53(5):1161–1168

    Article  Google Scholar 

  14. Yang PC, Li SS (1993) Analysis of current-voltage characteristicsof fully depleted SOI MOSFETs. Solid-State Electron 36:685–692

    Article  CAS  Google Scholar 

  15. Vasudev PK (1990) Ultra-thin silicon-on-insulator for high speed sub-micrometer CMOS technology. Solid State Technol:61–65

  16. Chiage TK, Chen ML (2007) A new analytical threshold voltage model for symmetrical double-gate MOSFETs with high-k gate dielectrics. Solid State Electron 51(3):387–393

    Article  Google Scholar 

  17. Goel K, Saxena M, Gupta M, Gupta R (2005) Two-dimensional analytical threshold voltage model for DMG epi-MOSFET. IEEE Trans Electron Devices 52(1):23–30

    Article  Google Scholar 

  18. Mohankumar N, Syamal B, Sarkar C (2010) Influence of Channel and Gate Engineering on the Analog and RF Performance of DG MOSFETs. IEEE Trans Electron Devices 57(4):820–826

    Article  CAS  Google Scholar 

  19. Sharma RK, Gupta M, Gupta R (2011) TCAD assessment of device design technologies for enhanced performance of nanoscale DG MOSFET. IEEE Trans Electron Devices 58(9):2936–2943

    Article  CAS  Google Scholar 

  20. Pradhan KP, Mohapatra SK, Sahu PK, Behera DK (2014) Impact of high-k gate dielectric on analog and RF performance of nanoscale DG-MOSFET. Microelectron J 45(2):144–151

    Article  CAS  Google Scholar 

  21. Colinge JP (2008) FinFETs and other Multi-Gate Transistors. Springer Science + Bussiness Media, New York

    Book  Google Scholar 

  22. Narendar V, Mishra RA (2015) Analytical modeling and simulation of multigate FinFET devices and the impact of high-k dielectrics on short channel effects (SCEs). Superlattice Microst 85:357–369

    Article  CAS  Google Scholar 

  23. Chang L, Yang KJ, Yeo Y -C, Polishchuk I, King T -J, Hu C (2002) Direct-Tunneling Gate Leakage Current in Double-Gate and Ultrathin Body MOSFETs. IEEE Trans Electron Devices 49(12):2288–2295

    Article  Google Scholar 

  24. Roy K, Mukhopadhyay S, Mahmoodi-Meimand H (2003) Leakage current mechanisms and leakage reduction techniques in deep-submicrometer cmos circuits. Proc IEEE 91(2):305–327

    Article  CAS  Google Scholar 

  25. Wong H -S P (2002) Beyond the conventional transistor. IBM J Res Dev 46(2):133–168

    Article  CAS  Google Scholar 

  26. Cheng B, Cao M, Rao R, Inani A, Voorde PV, Greene WM, Stork JMC, Yu Z, Zeitzoff PM, Woo JCS (1999) The Impact of High-K Dielectric and Metal Gate Electrodes on sub-100 nm MOSFETs. IEEE Trans Electron Devices 46(7):1537–1544

    Article  CAS  Google Scholar 

  27. Kuo W, Long H, Ou M-M, Chin KK (1999) Dual-material gate (DMG) field effect transistor. IEEE Trans Electron Devices 46(5):865–870

    Article  Google Scholar 

  28. Zhou X, Long W (1998) A novel hetero-material gate (HMG) MOSFET for deep-submicron ULSI technology. IEEE Trans Electron Devices 45(12):2546–2548

    Article  Google Scholar 

  29. Zhou X (2000) Exploring the Novel Characteristics of Hetro-Material Gate Field-Effect Transistors (HMGFET’s) with Gate-Material Engineering. IEEE Trans Electron Devices 47(1):113–120

    Article  CAS  Google Scholar 

  30. Kumar M, Chaudhry A (2004) Two-Dimensional Analytical Modelling of Fully Depleted Dual-Material Gate (DMG) SOI MOSFET and Evidence for Diminished Short- Channel Effects. IEEE Trans Electron Devices 15:569–574

    Article  Google Scholar 

  31. Reddy GV, Kumar M (2005) A New Dual-Material Double-Gate (DMDG) Nanoscale SOI MOSFET—Two-Dimensional Analytical Modeling and Simulation. IEEE Trans Nanotechnol 4(2):260–268

    Article  Google Scholar 

  32. Pavanello MA, Martino JA, Flandre D (2000) Graded-Channel fully depletedsilicon-on-insulator nMOSFET for reducing the parasitic bipolar effects. Solid-State Electron 44(6):917– 922

    Article  CAS  Google Scholar 

  33. Pavanello MA, Martino JA, Desard V, Flandre D (2000) Analog performance and application of graded-channel fully depleted SOI MOSFETs. Solid-State Electron 44(7):1219–1222

    Article  CAS  Google Scholar 

  34. Galeti M, Pavanello MA, Martino JA (2006) Evaluation of graded-channel SOI MOSFET operation at high temperatures. Microelectron J 37(7):601–607

    Article  Google Scholar 

  35. Kaur H, KAbra S, Haldar S, Gupta R (2008) An analytical threshold voltage model for graded channel asymmetric gate stack (GCASYMGAS) surrounding gate MOSFET. Solid-State Electron 52(2):305–311

    Article  CAS  Google Scholar 

  36. Goel E, Kumar S, Singh K, Singh B, Kumar M, Jit S (2016) 2-D Analytical Modeling of Threshold Voltage for Graded-Channel Dual-Material Double-Gate MOSFETs. IEEE Trans Electron Device 63(3):966–973

    Article  CAS  Google Scholar 

  37. Kumar S, Goel E, Singh K, Singh B, Singh PK, Baral K, Jit S (2017) 2-D Analytical Modeling of the electrical Characteristics of Dual-Material Double-Gate TFETs with SiO2/HfO2 Stacked Gate-Oxide Structure. IEEE Trans Electron Device 64(3):960– 968

    Article  CAS  Google Scholar 

  38. Narendar V, Rai S, Tiwari S (2016) A two-dimensional (2D) analytical surface potential and subthreshold current model for underlap dual-material double-gate (DMDG) FinFET. J Comput Electron 15(4):1316–1325

    Article  CAS  Google Scholar 

  39. Narendar V, Rai S, Tiwari S, Mishra RA (2016) A two-dimensional (2D) analytical subthreshold swing and transconductance model of underlap dual-material double-gate (DMDG) MOSFET for analog/RF applications. Superlattice Microst 100:274–289

    Article  CAS  Google Scholar 

  40. Device Simulation Software (2012) Silvaco International, Santa Clara, CA

  41. Wilk GD, Wallace RM, Anthony JM (2001) High-k Gate Dielectrics: Current Status and Materials Properties Considerations. J Appl Phys 89(10):5243–5275

    Article  CAS  Google Scholar 

  42. Chen Q, Harrell EM, Meindl JD (2003) A physical short-channel threshold voltage model for undoped symmetric double-gate MOSFETs. IEEE Trans Electron Devices 50(7):1631–1637

    Article  CAS  Google Scholar 

  43. The International Technology Roadmap for Semiconductors, [Online]. Available: http://public.itrs.net

  44. Young KK (1989) Short-Channel Effect in Fully Depleted SOI MOSFET’s. IEEE Trans Electron Devices 36 (2):399–402

    Article  Google Scholar 

  45. Kundu A, Koley K, Dutta A, Sarkar CK (2014) Impact of gate metal work-function engineering for enhancement of subthreshold analog/RF performance of underlap dual material gate DG-FET. Microelectron Reliab 54(12):2717–2722

    Article  CAS  Google Scholar 

  46. Wong H, Iwai H (2006) On the scaling issues and high-k replacement of ultrathin gate dielectrics for nanoscale MOS transistors. Microelectron Eng 83:1867–1904

    Article  CAS  Google Scholar 

  47. Chau R, Datta S, Doczy M, Kavalieros J, Metz M Gate dielectric scaling for high-performance CMOS: From SiO2 to High-k, Int’l. Workshop on Gate Insulators, 124-126, November 6-7, 2003, Tokyo, Japan

  48. Sze SM, Ng KK (2009) Physics of Semiconductor Devices, 3rd edn. Wiley, New Jersey

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadthiya Narendar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narendar, V., Girdhardas, K.A. Surface Potential Modeling of Graded-Channel Gate-Stack (GCGS) High-K Dielectric Dual-Material Double-Gate (DMDG) MOSFET and Analog/RF Performance Study. Silicon 10, 2865–2875 (2018). https://doi.org/10.1007/s12633-018-9826-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9826-z

Keywords

Navigation