Skip to main content
Log in

Comparative Study of Variations in Gate Oxide Material of a Novel Underlap DG MOS-HEMT for Analog/RF and High Power Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this paper an Underlap Double Gate (U-DG) Symmetric Heterojunction AlGaN/GaN Metal Oxide Semiconductor High Electron Mobility Transistor (MOS-HEMT) with gate oxide materials of different dielectric constant has been studied using gate oxide materials such as Hafnium dioxide (HfO2), Silicon dioxide (SiO2) and a symmetric gate stack (GS) of HfO2-SiO2. In this work, the analog performance of the devices has been studied on the basis of parameters like transconductance (gm), transconductance generation factor (gm/ID) and intrinsic gain (gmR0). This paper depicts the effect of varying oxide materials on the analog and RF figure of merits (FOMs) such as the gate to drain capacitance (CGD), gate to source capacitance (CGS) and total gate capacitance (CGG), intrinsic resistances, cut-off frequency (fT) and maximum frequency of oscillation (fMAX) using non-quasi-static approach. Studies show that the introduction of a gate oxide layer in the MOS-HEMT device increases the gate controllability reducing gate leakage currents improving RF performance. U-DG AlGaN/GaN MOS-HEMT with HfO2 gate dielectric shows superior Power output efficiency (POE) of 55% compared to the HfO2-SiO2 composite structure and SiO2 with 26% and 20% respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schwierz F (2008) The frequency limits of field-effect transistors: MOSFET vs. HEMT. International conference on solid-state and integrated circuit technology. proceedings, ICSICT, pp 1433–1436

    Google Scholar 

  2. Husna F, Lachab M, Sultana M, Adivarahan V (2012) High-temperature performance of AlGaN / GaN MOSHEMT with SiO 2 gate insulator Fabricated. IEEE Trans Electron Devices 59(9):2424–2429

    Article  CAS  Google Scholar 

  3. Zhang K, Cao MY, Chen YH et al (2013) Fabrication and characterization of V-gate AlGaN/GaN high-electron-mobility transistors. Chin Phys B 22(5):057304

    Article  Google Scholar 

  4. Acharya AR (2017) Group III – nitride semiconductors: preeminent materials for modern electronic and optoelectronic applications. Himal Phys 5(c):22–26

    Google Scholar 

  5. Ferreyra RA, Zhu C, Teke A (2017) Springer handbook of electronic and photonic materials. Springer, Cham

    Google Scholar 

  6. Conwell E, Weisskopf VF (1949) Theory of impurity scattering in Semiconductors. Phys Rev 77(3):388–390

    Article  Google Scholar 

  7. Su M, Chen C, Rajan S (2013) Prospects for the application of GaN power devices in hybrid electric vehicle drive systems. Semicond Sci Technol 28(7):074012

    Article  Google Scholar 

  8. Hollis MA, Wraback M, Simmons JA et al (2017) Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges. Adv Electron Mater 4(1):1600501

    Google Scholar 

  9. Subramani NK (2018) Physics-based TCAD device simulations and measurements of GaN HEMT technology for RF power Nandha Kumar Subramani To cite this version: HAL Id: tel-01702325 UNIVERSITÉ DE LIMOGES École Doctorale Sciences et Ingénierie pour l Information. Physics-Base

  10. Zhou X, Cheng Z, Hu S, Zhou W, Zhang S (2009) AIGaN/GaN HEMT device structure optimization design. Proc Int Symp Phys Fail Anal Integr Circ 3:2–6

    Google Scholar 

  11. Khan MA, Hu X, Tarakji A et al (2000) AlGaN / GaN metal – oxide – semiconductor heterostructure field-effect transistors on SiC substrates 2004. Appl Phys Lett 1339:26–29

    Google Scholar 

  12. Khan MA, Kuznia JN, Van Hove JM, Pan N, Carter J (1992) Observation of a twodimensional electron gas in low pressure metalorganic chemical vapor deposited GaNAl x Ga1 − x N heterojunctions, 1995. Appl Phys Lett 3027:58–61

    Google Scholar 

  13. Jena K, Swain R, Lenka TR (2015) Impact of oxide thickness on gate capacitance – modelling and comparative analysis of GaN-based MOSHEMTs. Pramana 85(6):1221–1232

    Article  CAS  Google Scholar 

  14. Basu S, Singh PK, Sze P-W, Wang Y-H (2010) AlGaN/GaN Metal-Oxide-semiconductor high electron mobility transistor with liquid phase deposited Al2O3 as gate dielectric. J Electrochem Soc 157(10):H947

    Article  CAS  Google Scholar 

  15. Freedsman JJ, Egawa T, Yamaoka Y, Yano Y, Ubukata A, Tabuchi T, Matsumoto K (2014) Normally-off Al2O3/AlGaN/GaN MOS-HEMT on 8 in. Si with low leakage current and high breakdown voltage (825 V). Appl Phys Express 7(4):041003

    Article  Google Scholar 

  16. Stoklas R, Gregušová D, Gaži Š, Novák J, Kordoš P (2011) Performance of AlGaN/GaN metal-insulator-semiconductor heterostructure field-effect transistors with AlN gate insulator prepared by reactive magnetron sputtering. J Vac Sci Technol B Nanotechnol Microelectron Mater Process Meas Phenom 29(1):01A809

    Google Scholar 

  17. Arulkumaran S, Ng GI, Liu ZH (2007) Effect of gate-source and gate-drain Si3 N4 passivation on current collapse in AlGaNGaN high-electron-mobility transistors on silicon. Appl Phys Lett 90(17):25–28

    Article  Google Scholar 

  18. Kundu A, Dasgupta A, Das R, Chakraborty S, Dutta A, Sarkar CK (2016) Influence of underlap on gate stack DG-MOSFET for analytical study of Analog/RF performance. Superlattice Microst 94:60–73

    Article  CAS  Google Scholar 

  19. Pardeshi H, Mohankumar N, Sarkar CK (2012) Performance Analysis of AlInN/GaN Underlap DG MOSFET for varying Underlap and Gate length. Int Conf Commun Circuits Syst:5–8, (Fig. 1)

  20. Pardeshi H (2015) Analog/RF performance of AlInN/GaN underlap DG MOS-HEMT. Superlattice Microst 88:508–517

    Article  CAS  Google Scholar 

  21. Wei M, Jin-Cheng Z, Jun-Shuai X, Hao Yao MX-HWCLH-X et al (2010) Fabrication and characteristics of AlInN/AlN/GaN MOS-HEMTs with ultra-thin atomic layer deposited Al2O3 gate dielectric. Chin Phys Lett 27(12):2008–2011

    Google Scholar 

  22. Shockley W, Read WT (1952) Statistics of the recombinations of holes and electrons. Am Phys Soc 87(5):835–842

    CAS  Google Scholar 

  23. Canali C, Minder R, Ottaviani G (1975) Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature. IEEE Trans Electron Devices 22(11):1045–1047

    Article  Google Scholar 

  24. Farahmand M, Garetto C, Bellotti E et al (2001) Monte Carlo simulation of electron transport in the III-nitride Wurtzite phase materials system: binaries and ternaries. IEEE Trans Electron Devices 48(3):535–542

    Article  CAS  Google Scholar 

  25. Wong H-SP, Chan KK, Taur Y (2002) Self-aligned (top and bottom) double-gate MOSFET with a 25 nm thick silicon channel. Tech Dig:427–430

  26. Wichmann N, Duszynski I, Wallart X, Bollaert S, Cappy A (2004) InAlAs-InGaAs double-gate HEMTs on transferred substrate. IEEE Electron Device Lett 25(6):354–356

    Article  CAS  Google Scholar 

  27. Wichmann N, Duszynski I, Wallart X, Bollaert S, Cappy A (2005) Fabrication and characterization of 100-nm In0.53Ga0.47As-In0.52Al0.48As double-gate HEMTs with two separate gate controls. Electron Device Lett IEEE 26(9):601–603

    Article  CAS  Google Scholar 

  28. Liu Y, Ishii K, Tsutsumi T et al (2003) Systematic electrical characteristics of ideal rectangular cross section Si-Fin channel double-gate MOSFETs fabricated by a wet process. IEEE Trans Nanotechnol 2(4):198–204

    Article  Google Scholar 

  29. McPherson J, Kim JY, Shanware A, Mogul H (2003) Thermochemical description of dielectric breakdown in high dielectric constant materials. Appl Phys Lett 82(13):2121–2123

    Article  CAS  Google Scholar 

  30. Lenka TR, Panda AK (2011) Characteristics study of 2DEG transport properties of AlGaN/GaN and AlGaAs/GaAs-based HEMT. Semiconductors 45(5):650–656

    Article  CAS  Google Scholar 

  31. Khokhar AZ, Taking S, Dabiran AM, Wasige E, Macfarlane D (2011) DC and RF performance of AlN/GaN MOS-HEMTs. IEICE Trans Electron E94-C(5):835–841

    Article  Google Scholar 

  32. Chang C-T, Hsu T-H, Chang EY, Chen Y-C, Trinh H-D, Chen KJ (2010) Normally-off operation AlGaN/GaN MOS-HEMT with high threshold voltage. Electron Lett 46(18):1280

    Article  CAS  Google Scholar 

  33. Jiangfeng D, Peng X, Kang W, Chenggong Y (2015) Small signal modeling of AlGaN/GaN HEMTs with consideration of CPW capacitances. J Semicond 36:034009

    Article  Google Scholar 

  34. Koley K, Dutta A, Syamal B, Saha SK, Sarkar CK (2013) Subthreshold analog/RF performance enhancement of underlap DG FETs with high- k spacer for low power applications. IEEE Trans Electron Devices 60(1):63–69

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the IEEE EDS Center of Excellence, Heritage Institute of Technology for providing laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Mondal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, A., Roy, A., Mitra, R. et al. Comparative Study of Variations in Gate Oxide Material of a Novel Underlap DG MOS-HEMT for Analog/RF and High Power Applications. Silicon 12, 2251–2257 (2020). https://doi.org/10.1007/s12633-019-00316-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00316-0

Keywords

Navigation