Skip to main content
Log in

Influence of Threshold Voltage Performance Analysis on Dual Halo Gate Stacked Triple Material Dual Gate TFET for Ultra Low Power Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this article, a two dimensional (2-D) threshold voltage modeling based gate and channel engineering are developed analytically for Dual Halo Gate Stacked Triple Material Dual Gate Tunnel FET (DH-GS-TM-DG-TFET) with effective surface charge. The model is derived by solving the 2-D Poisson equation in Silicon graded channel region using suitable boundary conditions. The proposed model incorporates the effects of various device parameters such as channel potential, electric field, DIBL, threshold voltage roll-off and drain current. Also, the fringing capacitance characteristics of the proposed DH-GS-TM-DG-TFET demonstrate superior performance over Triple material double gate and Single material double gate TFET structures. It is evident that the proposed device structure DH-GS-TM-DGTFET provides poor outflow current IOFF (10−16A/μm), and remarkable betterment in ON current (10−6A/μm). Moreover, the ION/IOFF ratio is 1010. To validate the robustness of model, the numerical results are compared with those obtained using Sentaurus TCAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vadthiya Narendar. Performance Enhancement of FinFET Devices with Gate -Stack (GS) High - K Dielectrics for Nanoscale Applications S i l i c o n ,Springer Nature,21 June 2018 https://doi.org/10.1007/s12633-018-9774-7

  2. Ionescu A, Riel H (2011) Tunnel field-effect transistors as energy efficient electronic switches. Nature 479(73):329–337

    Article  CAS  Google Scholar 

  3. Buvaneswari B, Balamurugan NB (2018) ‘Sensitivity analysis of double gate metal oxide semiconductor field effect transistor for bio-sensing applications'. Journal of Nanoelectronics and Optoelectronics

  4. David Cavalheiro,Francesc Moll, StanimirValtchev. TFET-Based Power Management Circuit for RF Energy Harvesting .IEEE Journal of the Electron Devices Society.Jan. 2017;5(1):7–17

  5. M. Venkatesh & N. B Balamurugan 2019,“New subthreshold performance analysis of germanium based dual halo gate stacked triple material surrounding gate tunnel field effect transistor”, Superlattices and Microstructures-Elsevier (130), 485–498 https://doi.org/10.1016/j.spmi.2019.05.016

  6. Lu H, Seabaugh A. Tunnel field-effect transistors: state-of-the-art. IEEE J ElectronDevSoc 2014;2(4):44–49

  7. Wu J, Min J, Taur Y (2015) Short-channel effects in tunnel FETs. IEEE Trans Electron Devices 62(9):3019–3024

    Article  Google Scholar 

  8. Santhosh Kumar Gupta, Satyaveer Kumar, Analytical Modeling of a Triple Mateial Double Gate TFET with Hetero – Dielectric Gate stack, Silicon,Springer Nature; July 2018

  9. Samiasafa,SamanthaLubabaNoor,Md.ZiaurRahmanKahan,“Physics-Based Generalized threshold voltage Model of Multiple Material Gate Tuneling FET structure, IEEE transactions on electron devices64 (4), April,2017

  10. M.Venkatesh, M. Suguna and N. B Balamurugan (2019),” Subthreshold performance analysis of germanium source dual halo dual dielectric triple material surrounding gate tunnel field effect transistor for ultra low power applications”, Journal of Electronic Materials - Springer, https://doi.org/10.1007/s11664-019-07492-0

  11. Bagga N (2015) Subir Kumar Sarkar, “an analytical model for tunnel barrier modulation in triple metal double gate TFET”. IEEE transactions on electron devices 62(7):2136–2142

    Article  CAS  Google Scholar 

  12. Ajayan J, Nirmal D, Prajoon P, Charles PJ (2017) Analysis of nanometer-scaleInGaAs/InAs/InGaAs composite channel MOSFETs using high-K dielectrics for highspeed applications. AEU - Int J Electron Commun 79:1517. https://doi.org/10.1016/j.aeue.2017.06.004

    Article  Google Scholar 

  13. M.Venkatesh, M. Suguna and N. B Balamurugan (2020),“Influence of Germanium Source Dual Halo Dual Dielectric Triple Material Surrounding Gate Tunnel FET for improved Analog/RF Performance”, Silicon-Springer https://doi.org/10.1007/s12633-020-00385-6

  14. Sentaurus Device User Guide, Synopsys Inc.,Version D-2010.0

  15. Magnone P, Crupi F, Alioto M, Kaczer B, De Jaeger B. Understanding the potential and the limits of germanium pMOSFETs for VLSI circuits from experimental measurements. IEEE Trans Very Large Scale Integr VLSI Syst2011;19(9):1569–1582

  16. Strangio S, Palestri P, Lanuzza M, Esseni D, Crupi F, SelmiL. Benchmarks of a III-V TFET technology platform against the 10-nm CMOS FinFET technology node considering basic arithmetic circuits.Solid State Electronics. 2017;

  17. Pradhan KP, Mohapatra SK, Agarwal PK, Sahu PK, Behera DK, Mishra J (2013) Symmetric DG-MOSFET with gate and channel engineering: a 2-D simulation study. MicroelectronSolid State Electron 2:1–9

    Google Scholar 

  18. Tsividis Y. Operation and Modelling of the MOS Transistor. 2ndedn.McGraw-Hill. New York .1989;

  19. Kumar S, EktaGoel KS, Singh B, Singh PK, KamalakshaBaral SJ (2017) 7 2-D Analytical Modeling of the Electrical Characteristics of Dual-Material DoubleGate TFETs With a SiO2/HfO2 Stacked Gate-Oxide Structure. IEEE Trans Electron Devices 64(3)

  20. SwetaChander, Baishya S (2015) A Two-dimensional Gate Threshold Voltage Model, for a Hetero-Junction SOI-Tunnel FET with Oxide/Source Overlap. IEEE Trans Electron Devices

  21. Emerging Research Devices.Int.Technol.RoadmapSemicond. 2017

  22. Suveetha P, BalamuruganN.B, ChakaravarthiG. C. V, RameshR.P,Kumar B. R. S. A 2D Analytical Modeling of single Halo Triple Material Surrounding Gate MOSFET.Journal of Electrical Engineering and Technology.2014;9(4):1355–1359

  23. Suveetha P, Balamurugan NB (2014) A 2D Subthreshold current model for single halo triple material surrounding gate MOSFETs. Microelectronics Journal 45(6):574–577

    Article  Google Scholar 

  24. Bentrcia T, Djeffal F, Benhaya AH (2012) Continuous analytic I-V model for GS DG MOSFETs including hot-carrier degradation effects. J Semicond 33:014001

    Article  Google Scholar 

  25. Sarkar A, De S, Sarkar CK (2013) Asymmetric halo and singlehalo dual-material gate and double halo double material gate n-MOSFETs characteristic parameter modeling. Int J Numer Model 26:41–55

    Article  Google Scholar 

  26. Park HJ, Ko PK, Hu C (1991) A charge sheet capacitance model of short channel MOSFET’s for spice. IEEE Trans Comput Aided Des 10(3):376–389

    Article  Google Scholar 

  27. Young KK (1989) Short Channel Effect in fully depleted SOI MOSFETs. IEEE Trans Electron Devices 36(2):339–402

    Article  Google Scholar 

  28. Yan RH, Ourmazd A, Lee KF (1992) Scaling the Si MOSFET: from bulk to SOI. IEEE Trans Electron Devices 39:1704–1710

    Article  CAS  Google Scholar 

  29. Razavi P, Orouji AA (2008) Nanoscale triple material double gate (TM-DG) MOSFET for improving short channel effects. International Conference on Advances in Electronics and Microelectronics, pp 11–14

    Google Scholar 

  30. Kane EO (1961) Theory of tunneling. J Appl Phys 32(1):83–91

    Article  Google Scholar 

  31. Hamid HAE, Guitart JR, Iniguez B (2007) Analytical model of the threshold voltage and subthreshold swing of undoped cylindrical gate-all-around-based MOSFETs. IEEE Trans. Electron Devices 54:572–579

    Article  Google Scholar 

  32. Kumar A, Kedzierski J, Laux SE (2005) Quantam-based simulation analysis of scaling in ultrathin body device structures. IEEE Trans. Electron Devices 52:614–617

    Article  Google Scholar 

  33. Vishnoi R, Kumar MJ (2014) compact analytical model of dual material gate tunnelling field effect transistor using interband tunnelling and channel transport. IEEE trans Electron Devices 61:1936–1942

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Venkatesh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesh, M., Balamurugan, N.B. Influence of Threshold Voltage Performance Analysis on Dual Halo Gate Stacked Triple Material Dual Gate TFET for Ultra Low Power Applications. Silicon 13, 275–287 (2021). https://doi.org/10.1007/s12633-020-00422-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00422-4

Keywords

Navigation