Skip to main content
Log in

Novel Linear Graded Binary Metal Alloy PαQ1-α Gate Electrode and Middle N+ Pocket Si0.5Ge0.5 Vertical TFET for High Performance

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper proposes a novel linear graded binary metal alloy PαQ1-α gate electrode and middle N+ pocket of Si0.5Ge0.5 Vertical-TFET (LGN-VTFET) device structure. The device is gradually developed by considering initially the impact of middle N+ pocket of low band Si0.5Ge0.5 material at the channel side and then utilizing the linear graded electrodes work function of binary metal alloy instead of single metal work function. The designed device exhibits fascinating performance enhancement, as it shows 2 orders ON-current improvement over the single work function VTFET (SG-VTFET) keeping the same OFF-current and also, it renders 7 mV/Dec Sub-threshold Slope (SS), which is 79% lower than (SG-VTFET). Inclusion of N+ pocket of Si0.5Ge0.5 causes narrower tunneling band space and hence results in a high tunneling rate. Implementation of the linear graded work function of binary metal alloys causes abrupt decay in the tunneling rate unlike the gradual decay tunneling rate of single work function from the source channel interface towards the channel and in turns, offers steep sub-threshold Slope (SS). This device with a lower SS improves the transistor’s switching and encourages its applicability in high-speed circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mookerjea S, Krishnan R, Datta S, Narayanan V (2009). IEEE Trans Electron Devices 56:2092. https://doi.org/10.1109/TED.2009.2026516

    Article  CAS  Google Scholar 

  2. Ahish S, Sharma D, Kumar YBN, Vasantha MH (2015). IEEE Trans Electron Devices 63:288. https://doi.org/10.1109/TED.2015.2503141

    Article  CAS  Google Scholar 

  3. Boucart K, Ionescu AM (2007). IEEE Trans Electron Devices 54:1725. https://doi.org/10.1109/TED.2007.899389

    Article  CAS  Google Scholar 

  4. Settino F, Lanuzza M, Strangio S, Crupi F, Palestri P, Esseni D, Selmi L (2017). IEEE Trans Electron Devices 64:2736. https://doi.org/10.1109/TED.2017.2689746

    Article  CAS  Google Scholar 

  5. Kumar N, Mushtaq U, Amin SI, Anand S (2019). Superlattices and Microstructures 125:356. https://doi.org/10.1016/j.spmi.2018.09.012

    Article  CAS  Google Scholar 

  6. Beneventi GB, Gnani E, Gnudi A, Reggiani S, Baccarani G (2014). IEEE Trans Electron Devices 61:776. https://doi.org/10.1109/TED.2014.2298212

    Article  CAS  Google Scholar 

  7. Kumar MJ, Janardhanan S (2013). IEEE Trans Electron Devices 60:3285. https://doi.org/10.1109/TED.2013.2276888

    Article  CAS  Google Scholar 

  8. Bagga N, Dasgupta S (2017). IEEE Trans Electron Devices 64:606. https://doi.org/10.1109/TED.2017.2783911

    Article  CAS  Google Scholar 

  9. Zhang JH (2016) STMicroelectronics lnc, U.S. Patent 9,385,195. US9385195B1

  10. Tan C, Chen J, Wu XJ, Zhang H (2018). Nat Rev Mat 3:1. https://doi.org/10.1038/natrevmats.2017.89

    Article  CAS  Google Scholar 

  11. Gandhi R, Chen Z, Singh N, Banerjee K, Lee S (2011). IEEE Electron Device Lett 32:1504. https://doi.org/10.1109/LED.2011.2165331

    Article  CAS  Google Scholar 

  12. Deb S, Singh NB, Islam N, Sarkar SK (2011). IEEE Trans Nanotechnol 11:472. https://doi.org/10.1109/TNANO.2011.2177669

    Article  Google Scholar 

  13. Dash S and Mishra GP (2020) J Comp Electron. 1:. https://doi.org/10.1007/s10825-020-01465-x

  14. Jhaveri R, Nagavarapu V, Woo JC (2010). IEEE Trans Electron Devices 58:80. https://doi.org/10.1109/TED.2010.2089525

    Article  CAS  Google Scholar 

  15. Sadek A, Ismail K, Armstrong MA, Antoniadis DA, Stern F (1996). IEEE Trans Electron Dev 43:1224. https://doi.org/10.1109/16.506773

    Article  CAS  Google Scholar 

  16. Haddara YM, Ashburn P and Bagnall DM (2017) Springer Handbook of Electronic and Photonic Materials 1–1. DOI : https://doi.org/10.1007/978-3-319-48933-9_22

  17. Haensch W, Nowak EJ, Dennard RH, Solomon PM, Bryant A, Dokumaci OH, Kumar A, Wang X, Johnson JB, Fischetti MV (2006) Silicon CMOS devices beyond scaling. IBM J Res Dev 50:339–361. https://doi.org/10.1147/rd.504.0339

    Article  CAS  Google Scholar 

  18. Huang, H.S., Huang, P.R., Wang, M.C., Chen, S.Y., Wang, S.J., Chou, C.C., Huang, L.S. and Wang, W.L., (2019). https://doi.org/10.20944/preprints201902.0093.v1

  19. Venkatesh, M., Suguna, M. and Balamurugan, N.B., Silicon L, (2020). https://doi.org/10.1007/s12633-020-00385-6

  20. Venkatesh M, Suguna M, Balamurugan NB (2019) Subthreshold Performance Analysis of Germanium Source Dual Halo Dual Dielectric Triple Material Surrounding Gate Tunnel Field Effect Transistor for Ultra Low Power Applications. J Electron Mater 48:6724–6734. https://doi.org/10.1007/s11664-019-07492-0

    Article  CAS  Google Scholar 

  21. Dash DK, Saha P, Banerjee P, Sarkar SK (2018) International conference on computing. Power Comm Technol (GUCON) 212. https://doi.org/10.1109/GUCON.2018.8675072

  22. Tsui BY, Huang CF (2003) Wide range work function modulation of binary alloys for MOSFET application. IEEE Electron Device Lett 24:153–155. https://doi.org/10.1109/LED.2003.809528

    Article  CAS  Google Scholar 

  23. Young KK (1989) Short-channel effect in fully depleted SOI MOSFETs. IEEE Trans Electron Devices 36:399–402. https://doi.org/10.1109/16.19942

    Article  Google Scholar 

  24. Ishii R, Matsumura K, Sakai A, Sakata T (2001). Appl Surface Sci 169:658. https://doi.org/10.1016/S0169-4332(00)00807-2

    Article  Google Scholar 

  25. Nigam K, Kondekar P, Sharma D (2016) High frequency performance of dual metal gate vertical tunnel field effect transistor based on work function engineering. Micro Nano Lett 11:319–322. https://doi.org/10.1049/mnl.2015.0526

    Article  CAS  Google Scholar 

  26. Manna B, Sarkhel S, Islam N, Sarkar S, Sarkar SK (2012) Spatial Composition Grading of Binary Metal Alloy Gate Electrode for Short-Channel SOI/SON MOSFET Application. IEEE Trans Electron Devices 59:3280–3287. https://doi.org/10.1109/TED.2012.2220143

    Article  CAS  Google Scholar 

  27. Kumar, P., Gupta, M. and Singh, K., 2019. Performance evaluation of transition metal Dichalcogenides based steep subthreshold slope tunnel field effect transistor. Silicon, pp.1-8

  28. Kumar N, Amin SI, Anand S (2020) Design and performance optimization of novel Core–Shell Dopingless GAA-nanotube TFET with Si 0.5 Ge 0.5-based source. IEEE Trans Electron Devices 67(3):789–795

    Article  CAS  Google Scholar 

  29. Kanungo S, Chattopadhyay S, Gupta PS, Sinha K, Rahaman H (2016) Study and Analysis of the Effects of SiGe Source and Pocket-Doped Channel on Sensing Performance of Dielectrically Modulated Tunnel FET-Based Biosensors. IEEE Trans Electron Devices 63:2589–2596. https://doi.org/10.1109/TED.2016.2556081

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeetendra Singh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Wadhawa, G. Novel Linear Graded Binary Metal Alloy PαQ1-α Gate Electrode and Middle N+ Pocket Si0.5Ge0.5 Vertical TFET for High Performance. Silicon 13, 2137–2144 (2021). https://doi.org/10.1007/s12633-020-00654-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00654-4

Keywords

Navigation