Skip to main content
Log in

Performance Improvement of Heterojunction Double Gate TFET with Gaussian Doping

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

A new Ge/SiGe heterojunction double-gate tunnel field effect transistor (DGT) model with hetero dielectric gate and Gaussian doping drain region is investigated for the first time. The introduction of heterojunction with hetero dielectric will reduce band-to-band tunneling (BTBT) leakage current while maintaining high mobility to enhance drain current and transconductance characteristics of the device significantly. Along with that, the combined effect of analytical drain doping profile (Gaussian) and hetero dielectric suppresses the ambipolar behavior. Different DC characteristics of the device like energy band analysis, electric field, drain current and BTBT generation rate are analyzed for the proposed structure. RF figure of merit for the HD-HJDGT-GD is express by analyzing its transconductance (gm), cut off frequency (fT), maximum oscillation frequency (fmax), gain bandwidth product (GBP) and transconductance frequency product (TFP). The outcome of the model under study is compared with conventional DGT. It is apparent from the analysis that the recommended model has better DC and RF performance, which makes this device worth studying to be used in high-frequency applications. TCAD simulation is performed by using Sentaurus 2D device simulator from Synopsys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park BG (2016) Tunneling field-effect transistors for ultra-low-power application. Nano Devices and Circuit Techniques for Low-Energy Applications and Energy Harvesting. Springer Netherlands, Dordrecht, pp 3–32

    Chapter  Google Scholar 

  2. Choi WY, Park BG, Lee JD, Liu TJK (2007) Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett 28(8):743–745

    Article  CAS  Google Scholar 

  3. Appenzeller J, Lin YM, Knoch J, Avouris P (2004) Band-to-band tunneling in carbon nanotube field-effect transistors. Phys Rev Lett 93(19):196 805-1-196 805-4

    Article  Google Scholar 

  4. Ionescu AM, Riel H (2011) Tunnel field effect transistors as energy efficient electronic switches. Nature 479(7373):329–337

    Article  CAS  Google Scholar 

  5. Koswatta SO, Lundstrom MS, Nikonov DE (2009) Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans Electron Devices 56(3):456–465

    Article  CAS  Google Scholar 

  6. Barah D, Singh AK, Bhowmick B (2019) TFET on selective buried oxide (SELBOX) substrate with improved ION /IOFF ratio and reduced ambipolar current. Silicon. 11:973–981

    Article  CAS  Google Scholar 

  7. Saurabh S, Kumar MJ (2010) Estimation and compensation of process induced variations in Nanoscale tunnel field effect transistors (TFETs) for improved reliability. IEEE Trans Device Mater Rel 10(3):390–395

    Article  CAS  Google Scholar 

  8. Avci UE, Morris DH, Young IANA (2015) Tunnel field-effect transistors : prospects and challenges. IEEE J Electron Devices Soc 3(3):88–95

    Article  Google Scholar 

  9. Alper C, Michielis LD, Dagtekin N, Lattanzio L, Bouvet D, Ionescu AM (2013) Tunnel FET with non-uniform gate capacitance for improved device and circuit level performance. Solid State Electron 84:205–210

    Article  CAS  Google Scholar 

  10. Liu H, Datta S, Narayanan V (2013) Steep switching tunnel FET: a promise to extend the energy efficient roadmap for post-CMOS digital and analog/RF applications. in Proc. ISLPED. pp. 145-150

  11. Pandy CK, Dash D, Chaudhury S (2019) Approach to suppress ambipolar conduction in TFET using dielectric pocket. Micro Nano Lett 14(1):86–90

    Article  Google Scholar 

  12. Abdi DB, Kumar MJ (2014) Controlling ambipolar current in tunneling FETs using overlapping gate-on-drain. IEEE J Electron Devices Soc 2(6):187–190

    Article  Google Scholar 

  13. Sahay S, Kumar MJ (2015) Controlling the drain side tunneling width to reduce Ambipolar current in tunnel FETs using Heterodielectric BOX. IEEE Trans Electron Devices 62(11):3882–3886

    Article  Google Scholar 

  14. Dutta R, Konar SC, Paitya N (2020) Influence of gate and channel engineering on multigate tunnel FETs: a review. Comput Advance Commun Circuits Syst Lect Notes Electric Eng 575

  15. Tajally MB, Karami MA (2019) TFET performance optimization using gate work function engineering. Indian J Phys 93:1123–1128

    Article  CAS  Google Scholar 

  16. Garg S, Saurabh S (2017) Suppression of ambipolar current in tunnel FETs using drain pocket: proposal and analysis. Superlattice Microst 113:261–270

    Article  Google Scholar 

  17. Dash S, Lenka AS, Jena B, Mishra GP (2018) Impact of source pocket doping on RF and linearity performance of a cylindrical gate tunnel FET. Int J Num Model 31(3):e2283 1–14

    Article  Google Scholar 

  18. Kumar S, Singh K, Chander S, Goel E, Singh PK, Baral K, Singh B, Jit S (2017) 2-D analytical drain current model of double-gate heterojunction TFETs with a SiO 2/HfO 2 stacked gate-oxide structure. IEEE Trans Electron Devices 65:331–338

    Article  Google Scholar 

  19. Chattopadhyay A, Mallik A (2011) Impact of a spacer dielectric anda gate overlap/underlap on the device performance of a tunnel fieldeffect transistor. IEEE Trans Electron Devices 58:677–683

    Article  CAS  Google Scholar 

  20. Verhulst A, Vandenberghe WG, Maex K, Gendt SD, Heyns MM, Groeseneken G (2008) Complementary silicon-based heterostructuren tunnel-FETs with high tunnel rates. IEEE Electron Device Lett 29(12):1398–1401

    Article  CAS  Google Scholar 

  21. Krishnamohan T, Kim D, Raghunathan S, Saraswat K (2012) Double gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and 60 mV/dec subthreshold slope in: IEDM Tech. Dig pp 1–3

  22. Royer CL, Villalon A, Martinie S, Nguyen P, Barraud S, Glowacki F, Cristoloveanu S, Vinet M (2015) Experimental investigations of SiGe Channels for Enhancing the SGOI Tunnel FETs Performance. EUROSOI-ULIS. pp.69-72

  23. Kim SH, Kam H, Hu C, Liu TJK (2009) Ge-Source Tunnel Field Effect Transistors with Record High ION/IOFF. VLSI Symposium Technical Digest. pp. 178–179

  24. Beohar A, Yadav N, Shah AP, Vishvakarma SK (2018) Analog/RF characteristics of a 3D-Cyl underlap GAA-TFET based on a Ge source using fringing-field engineering for low-power applications. J Comput Electron 17(4):1650–1657

    Article  CAS  Google Scholar 

  25. Anghel C, Hraziia H, Gupta A, Amara A, Vladimirescu A (2011) 30-nm tunnel FET with improved performance and reduced ambipolar current. IEEE Trans Electron Devices 58(6):1649–1654

    Article  CAS  Google Scholar 

  26. Sahoo S, Dash S, Mishra GP (2019) Work-function modulated hetero gate charge plasma TFET to enhance the device performance. 2019 Devices for Integrated Circuit (DevIC), pp. 461–464. Kalyani

  27. Dubey PK, Kaushik BK (2017) T-shaped III-V heterojunction tunneling field-effect transistor. IEEE Trans Electron Devices 64:3120–3125

    Article  CAS  Google Scholar 

  28. Choi WY, Lee W (Sep. 2010) Hetero-gate-dielectric tunneling field-effect transistors. IEEE Trans Electron Devices 57(9):2317–2319

    Article  Google Scholar 

  29. Sentaurus Device User Guide (2014) Synopsys, Inc. Mountain View

  30. Kim SH, Kam H, Hu C, Liu TJK (2009) Ge-source tunnel field effect transistors with record high ION/IOFF in VLSI Symp. Tech. Dig, pp. 178-179

  31. Ikarashi N, Watanabe K, Masuzaki K, Nakagawa T (2006) Thermal stability of a HfO2/SiO2 interface. Appl Phys Lett 88:101912-1-3

  32. Kao KH, Verhulst AS, Vandenberghe WG, Sore B, Groeseneken G, Meyer KD (2012) Direct and indirect band-to-band tunneling in germanium-based TFETs. IEEE Trans Electron Devices 59(2):292–301

    Article  CAS  Google Scholar 

  33. Sahoo S, Dash S, Mishra GP (2019) An Accurate Drain Current Model for Symmetric Dual Gate Tunnel FET Using Effective Tunneling Length. Nanosci Nanotechnol-Asia 9(1):85–91

    Article  CAS  Google Scholar 

  34. Vijayvargiya V, Viswakarma SK (2014) Effect of drain doping profile on double-gate tunnel field-effect transistor and its influence on device RF performance. IEEE Trans Nanotechnol 13(5):974–981

    Article  CAS  Google Scholar 

  35. Shimomura H (2011) A study on high-frequency performance in MOSFETs scaling. In: Tokyo Inst. Technol. Tokyo, Japan, Tech. Rep. 1–167

  36. Madan J, Chaujar R (2016) Interfacial charge analysis of heterogeneous gate dielectric-gate all around- tunnel FET for improved device reliability. IEEE Trans Device Mater Rel 16(2):227–234

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guru Prasad Mishra.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S., Dash, S., Routray, S.R. et al. Performance Improvement of Heterojunction Double Gate TFET with Gaussian Doping. Silicon 13, 4275–4283 (2021). https://doi.org/10.1007/s12633-020-00736-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00736-3

Keywords

Navigation