Skip to main content
Log in

Surface Potential Modeling and Simulation Analysis of Dopingless TFET Biosensor

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The present paper has proposed a dielectric modulated gate underlap dopingless tunnel field effect transistor (DM-GUD-TFET). In the proposed device, a cavity is introduced on side of the gate metal to attain high sensitivity for biomedical applications. The immobilization of biomolecules within the cavity induces the variation in surface potential. The present work has analyzed different parameters affecting the electrical characteristics of the device which include a change in spacer length, variation in applied voltages (Vds and Vgs), and channel material. The modeling output characteristics have been compared with simulated outcomes for validating results. The potential model is obtained by categorizing the structure into ten sections counting source-drain depleted sections. The surface potential of each section is resolved using 1-dimennsional and 2-dimensional Poisson’s eq. (P.Eq.), respectively. The different values of dielectric constant and charge density are used for recreating the biomolecules for simulation in Silvaco ATLAS tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malhotra BD, Kumar S, Pandey CM (2016) Nanomaterials based biosensors for cancer biomarker detection. J Phys Conf Ser 704(1):1–11. https://doi.org/10.1088/1742-6596/704/1/012011

    Article  CAS  Google Scholar 

  2. Shin J, Choi S, Yang J-S, Song J, Choi J-S, Jung H-I Smart forensic phone: Colorimetric analysis of a bloodstain for age estimation using a smartphone. Sensors Actuators B Chem 243:221–225. https://doi.org/10.1016/j.snb.2016.11.142

  3. Bergveld P (2003) Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years. Sensors Actuators B Chem 88(1):1–20. https://doi.org/10.1016/S0925-4005(02)00301-5

    Article  CAS  Google Scholar 

  4. Tavakoli J, Tang Y Honey/PVA hybrid wound dressings with controlled release of antibiotics: Structural, physico-mechanical and in-vitro biomedical studies. Mater Sci Eng C 77(1):318–325. https://doi.org/10.1016/j.msec.2017.03.272

  5. Stern E, Klemic JF, Routenberg DA, Wyrembak PN, Turner-Evans DB, Hamilton AD, LaVan DA, Fahmy TM, Reed MA Label-free immune detection with CMOS-compatible semiconducting nanowires. Nat 445(7127):519–522. https://doi.org/10.1038/nature05498

  6. Narang R, Reddy KVS, Saxena M, Gupta RS, Gupta M (2012) A dielectric-modulated tunnel-FET-based biosensor for label-free detection: analytical modeling study and sensitivity analysis. IEEE Transaction on Electron Devices 59(10):2809–2817. https://doi.org/10.1109/TED.2012.2208115

    Article  Google Scholar 

  7. Chen X, Guo Z, Yang GM, Li J, Li MQ, Liu JH, Huang XJ (2010) Electrical nanogap devices for biosensing. Mater Today 13(11):28–41. https://doi.org/10.1016/S1369-7021(10)70201-7

    Article  CAS  Google Scholar 

  8. Choi J-M, Han J-W, Choi S-J, Choi Y-K (2010) Analytical modelingof a nanogap-embedded FET for application as a biosensor. IEEE Transactions Electron Devices 57(12):3477–3484. https://doi.org/10.1109/TED.2010.2076152

    Article  CAS  Google Scholar 

  9. Chen X, Liu Y, Huang J, Liu W, Huang J, Zhang Y, Fu W (2017) Label-free techniques for laboratory medicine applications. Front Lab Med 1(2):82–85. https://doi.org/10.1016/j.flm.2017.06.003

    Article  Google Scholar 

  10. Poghossian A, Schöning MJ (2014) Label-Free Sensing of Biomolecules with Field-Effect Devices for Clinical Applications. Electroanalysis 26:1197–1213. https://doi.org/10.1002/elan.201400073

    Article  CAS  Google Scholar 

  11. Wadhwa G, Raj B (2018) Label free detection of biomolecules using charge-plasma-based gate Underlap dielectric modulated Junctionless TFET. J Electron Mater Springer 47(08):4883–4893

    Google Scholar 

  12. Chanda M, Das R, Kundu A, Sarkar CK (2017) Analytical modeling of label free biosensor using charge plasma based gate underlap dielectric modulated MOSFET. Superlattice Microst 104:451–460. https://doi.org/10.1016/j.spmi.2017.03.010

    Article  CAS  Google Scholar 

  13. Wadhwa G, Raj B (2019) Design, simulation and performance analysis of JLTFET biosensor for high sensitivity. IEEE Trans Nanotechnol 18:567–574. https://doi.org/10.1109/TNANO.2019.2918192

    Article  CAS  Google Scholar 

  14. GirishWadhwa BR (2018) Parametric variation analysis of symmetric double gate charge plasma JLTFET for biosensor application. IEEE Sensors J 18(15):6070–6077

    Article  Google Scholar 

  15. Kumar MJ, Janardhanan S (2013) Doping-less tunnel field effect transistor: design and investigation. IEEE Trans Electron Devices 60(10):3285–3290

    Article  CAS  Google Scholar 

  16. Narang R, Saxena M, Gupta RS, Gupta M (2012) Dielectric modulated tunnel field-effect transistor—A biomolecule sensor. IEEE Electron Device Lett 33(2):266–268

    Article  CAS  Google Scholar 

  17. Narang R, Saxena M, M., & Gupta, M. (2015) Analysis of gate underlap channel double gate MOS transistor for electrical detection of bio-molecules. Superlattice Microst 88:225–243

    Article  Google Scholar 

  18. Singh A, Narang R, Gupta M, Saxena M (2013) Investigation of dielectric-modulated double-gate junctionless MOSFET for detection of biomolecules. Annu IEEE India Conf (INDICON). https://doi.org/10.1109/INDCON.2013.6725863

  19. Zhang L, Ma C, He J, Lin X, Chan M (2010) Analytical solution ofrrr subthreshold channel potential of gate underlap cylindrical gate-all around MOSFET. Solid State Electron 54(8):806–808. https://doi.org/10.1016/j.sse.2010.03.020

    Article  CAS  Google Scholar 

  20. Vaddi R, Agarwal RP, Dasgupta S (2011) Analytical modeling of subthreshold current and subthreshold swing of an underlap DGMOSFET with tied–independent gate and symmetric–asymmetric options. Microelectron J 42(5):798–807. https://doi.org/10.1016/j.mejo.2011.01.004

    Article  CAS  Google Scholar 

  21. Im H, Huang X-J, Gu B, Choi Y-K (2007) A dielectric-modulated field-effect transistor for biosensing. Nat Nanotechnol 2(7):430–434

    Article  CAS  Google Scholar 

  22. Xu P, Lou H, Zhang L, Yu Z, Lin X (2017) Compact model for double-gate tunnel FETs with gate–drain Underlap. IEEE Trans Electron Devices 64(12):5242–5248. https://doi.org/10.1109/TED.2017.2762861

    Article  CAS  Google Scholar 

  23. Lee MJ, Choi WY (2011) Analytical model of single-gate silicon-on insulator (SOI) tunneling field-effect transistors (TFETs). Solid State Electron 63(1):110–114

    Article  CAS  Google Scholar 

  24. Wan J, Le Royer C, Zaslavsky A, Cristoloveanu S (2011) A tunneling field effect transistor model combining interband tunneling with channel transport. J Appl Phys 110(10):104503–1–104503-7

    Article  Google Scholar 

  25. Shen C, Ong SL, Heng CH, Samudra G, Yeo YC (2008) A variational approach to the two-dimensional nonlinear poisson’s equation for the modeling of tunneling transistors. IEEE Electron Device Lett 29(11):1252–1255. https://doi.org/10.1109/LED.2008.2005517

    Article  CAS  Google Scholar 

  26. W. G. Vandenberghe, A. S. Verhulst, G. Groeseneken, B. Soree, and W. Magnus (2008) Analytical model for a tunnel field-effect transistor in Proc. MELECON, pp. 923–928, doi: https://doi.org/10.1109/MELCON.2008.4618555

  27. ATLAS (2016) Device simulation software. Silvaco Int, Santa Clara, CA

    Google Scholar 

  28. Gholizadeh M, Hosseini SE (2014) A 2-D analytical model for double gate tunnel FETs. IEEE Trans Electron Devices 61(5):1494–1500. https://doi.org/10.1109/TED.2014.2313037

    Article  Google Scholar 

  29. Wu C, Huang R, Huang Q, Wang C, Wang J, Wang Y (2014) An analytical surface potential model accounting for the dual-modulation effects in tunnel FETs. IEEE Trans Electron Devices 61(8):2690–2696. https://doi.org/10.1109/TED.2014.2329372

    Article  Google Scholar 

  30. Choi J-M, Han J-W, Choi S-J, Choi Y-K Analytical modeling of a nanogap-embedded FET for application as a biosensor, IEEE Transaction Electron Device, vol. 57, no. 12, pp. 3477–3484, Dec. 2010.Rakhi Narang, Manoj Saxena, and Mridula Gupta, "Comparative Analysis of Dielectric-Modulated FET and TFET-Based Biosensor" IEEE Transactions on Nanotechnology, vol. 14, no. 3, pp. 427–435, May 2015

Download references

Availability of Data and Material

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design and simulation. Material preparation, data collection and analysis were performed by Girish Wadhwa and Balwinder Raj. The first draft of the manuscript was written by Girish Wadhwa and other author commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Girish Wadhwa.

Ethics declarations

Conflict of Interest

The authors have declared that no competing interests exist.

Code Availability

Not applicable

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wadhwa, G., Raj, B. Surface Potential Modeling and Simulation Analysis of Dopingless TFET Biosensor. Silicon 14, 2147–2156 (2022). https://doi.org/10.1007/s12633-021-01011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01011-9

Keywords

Navigation