Skip to main content
Log in

A Review on the Effect of Silica to Alumina Ratio, Alkaline Solution to Binder Ratio, Calcium Oxide + Ferric Oxide, Molar Concentration of Sodium Hydroxide and Sodium Silicate to Sodium Hydroxide Ratio on the Compressive Strength of Geopolymer Concrete

  • Review Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Recently, geopolymer concrete (GPC) has gained substantial consideration and commercial interest in the construction industry owing to the superior mechanical and chemical properties in comparison with the ordinary Portland cement (OPC) that it brings through the use of waste material and reduction in the CO2 emission. Previous research Studies revealed that different ratios of chemical oxide combination of the raw material (fly ash, rice husk ash, meta kaolin, sugarcane bagasse ash, GGBS etc.) strongly affect the mechanical and durability properties of GPC. Nevertheless, findings concerning different ratios of Si/Al, alkaline solution to binder, NaOH to Na2SiO3, combined percentage of Fe2O3 + CaO and molar concentration of NaOH are controversial regarding the compressive strength of GPC. Therefore, in the light of literature, this study presents the investigation of the compressive strength behavior against the different ratios of oxides and alkaline solution (i.e. Si/Al, alkaline solution/binder, NaOH/Na2SiO3, Fe2O3 + CaO and NaOH molar concentration) present in the raw material used for the production of GPC. An extensive data from previous research publications has been collected and trend of compressive strength for 7 and 28 days was developed against different ratios of Si/Al, alkaline solution/binder, NaOH/Na2SiO3, in order to conclude a typical range for the above mention parameters. It was concluded that compressive strength of GPC greatly depends on the variation in ratios of Si/Al, alkaline solution/binder, NaOH/Na2SiO3, Fe2O3 + CaO and NaOH molar concentration. It was also concluded that the compressive strength of GPC has been primarily affected by the ratio of Si/Al, alkaline solution/binder, NaOH/Na2SiO3 and molar concentration of NaOH. Besides, the oxides like CaO and Fe2O3 although smaller in quantity in comparison with the alumina and silicate oxides, have indicated a distinct influence on the compressive strength development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article.

References

  1. Lawrence CD (2003) The production of low-energy cements. Lea’s Chemistry of Cement and Concrete:421–470

  2. U.S. Geological Survey (2014). Mineral commodity summaries 2014. Mineral Commodity Summaries. https://doi.org/10.3133/70100414

  3. Gjorv OE (1989) Alkali activation of a Norwegian granulated blast furnace slag. In: Proc. third international conference on FA, silica fume, slag, and natural Pozzolans in concrete, Trondheim, Norway, pp. 1501–1518

  4. Philleo RE (1989). Slag or other supplementary materials? In: Proceedings of the third international conference on FA, silica fume, slag, and natural Pozzolans in concrete, Trondheim, Norway, pp. 1197–1208

  5. Amran YHM, Alyousef R, Alabduljabbar H, El-Zeadani M (2020) Clean production and properties of geopolymer concrete; a review. J Clean Prod 251:119679. https://doi.org/10.1016/j.jclepro.2019.119679

    Article  CAS  Google Scholar 

  6. Razak S, Zainal FF, Shamsudin SR (2020) Effect of porosity and water absorption on compressive strength of Fly ash based Geopolymer and OPC paste. IOP Conference Series: Materials Science and Engineering 957:012035. https://doi.org/10.1088/1757-899x/957/1/012035

    Article  CAS  Google Scholar 

  7. Bellum RR, Muniraj K, Madduru SRC (2020) Exploration of mechanical and durability characteristics of fly ash-GGBFS based green geopolymer concrete. SN Applied Sciences 2(5). https://doi.org/10.1007/s42452-020-2720-5

  8. Verma M, Dev N (2020) Sodium hydroxide effect on the mechanical properties of flyash-slag based geopolymer concrete. Struct Concr 22. https://doi.org/10.1002/suco.202000068

  9. Madani H, Ramezanianpour AA, Shahbazinia M, Ahmadi E (2020) Geopolymer bricks made from less active waste materials. Constr Build Mater 247:118441. https://doi.org/10.1016/j.conbuildmat.2020.118441

    Article  CAS  Google Scholar 

  10. Silva G, Kim S, Bertolotti B, Nakamatsu J, Aguilar R (2020) Optimization of a reinforced geopolymer composite using natural fibers and construction wastes. Constr Build Mater 258:119697. https://doi.org/10.1016/j.conbuildmat.2020.119697

    Article  CAS  Google Scholar 

  11. Sandanayake M, Gunasekara C, Law D, Zhang G, Setunge S, Wanijuru D (2020) Sustainable criterion selection framework for green building materials – an optimisation based study of fly-ash Geopolymer concrete. Sustain Mater Technol 25:e00178. https://doi.org/10.1016/j.susmat.2020.e00178

    Article  CAS  Google Scholar 

  12. Silva PD, Sagoe-Crenstil K, Sirivivatnanon V (2007) Kinetics of geopolymerization: role of Al2O3 and SiO2. Cem Concr Res 37(4):512–518. https://doi.org/10.1016/j.cemconres.2007.01.003

    Article  CAS  Google Scholar 

  13. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ (2006) Geopolymer technology: the current state of the art. J Mater Sci 42(9):2917–2933. https://doi.org/10.1007/s10853-006-0637-z

    Article  CAS  Google Scholar 

  14. Wang H, Li H, Yan F (2005) Synthesis and mechanical properties of metakaolinite-based geopolymer. Colloids Surf A Physicochem Eng Asp 268(1–3):1–6. https://doi.org/10.1016/j.colsurfa.2005.01.016

    Article  CAS  Google Scholar 

  15. Xu H, Van Deventer JSJ (2002) Geopolymerisation of multiple minerals. Miner Eng 15(12):1131–1139. https://doi.org/10.1016/s0892-6875(02)00255-8

    Article  CAS  Google Scholar 

  16. Buchwald A, Hohmann M, Posern K, Brendler E (2009) The suitability of thermally activated illite/smectite clay as raw material for geopolymer binders. Appl Clay Sci 46(3):300–304. https://doi.org/10.1016/j.clay.2009.08.026

    Article  CAS  Google Scholar 

  17. Krivenko PV, Kovalchuk GY (2007) Directed synthesis of alkaline aluminosilicate minerals in a geocement matrix. J Mater Sci 42(9):2944–2952. https://doi.org/10.1007/s10853-006-0528-3

    Article  CAS  Google Scholar 

  18. Bajpai R, Choudhary K, Srivastava A, Sangwan KS, Singh M (2020) Environmental impact assessment of fly ash and silica fume based geopolymer concrete. J Clean Prod 254:120147. https://doi.org/10.1016/j.jclepro.2020.120147

    Article  CAS  Google Scholar 

  19. Pacheco-Torgal F, Castro-Gomes J, Jalali S (2008) Alkali-activated binders: a review. Part 2. About materials and binders manufacture. Constr Build Mater 22(7):1315–1322. https://doi.org/10.1016/j.conbuildmat.2007.03.019

    Article  Google Scholar 

  20. Nazari A, Bagheri A, Riahi S (2011) Properties of geopolymer with seeded fly ash and rice husk bark ash. Mater Sci Eng A 528(24):7395–7401. https://doi.org/10.1016/j.msea.2011.06.027

    Article  CAS  Google Scholar 

  21. Hajjaji, W., Andrejkovičová, S., Zanelli, C., Alshaaer, M., Dondi, M., Labrincha, J. A., & Rocha, F. (2013). Composition and technological properties of geopolymers based on metakaolin and red mud. Mater Des (1980-2015), 52, 648–654. doi:https://doi.org/10.1016/j.matdes.2013.05.058

  22. Giasuddin HM, Sanjayan JG, Ranjith PG (2013) Strength of geopolymer cured in saline water in ambient conditions. Fuel 107:34–39. https://doi.org/10.1016/j.fuel.2013.01.035

    Article  CAS  Google Scholar 

  23. Yusuf MO, Megat Johari MA, Ahmad ZA, Maslehuddin M (2014) Strength and microstructure of alkali-activated binary blended binder containing palm oil fuel ash and ground blast-furnace slag. Constr Build Mater 52:504–510. https://doi.org/10.1016/j.conbuildmat.2013.11.012

    Article  Google Scholar 

  24. Oh JE, Monteiro PJM, Jun SS, Choi S, Clark SM (2010) The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cem Concr Res 40(2):189–196. https://doi.org/10.1016/j.cemconres.2009.10.010

    Article  CAS  Google Scholar 

  25. Aydın S, Baradan B (2012) Mechanical and microstructural properties of heat cured alkali-activated slag mortars. Mater Des 35:374–383. https://doi.org/10.1016/j.matdes.2011.10.005

    Article  CAS  Google Scholar 

  26. He J, Jie Y, Zhang J, Yu Y, Zhang G (2013) Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cem Concr Compos 37:108–118. https://doi.org/10.1016/j.cemconcomp.2012.11.010

    Article  CAS  Google Scholar 

  27. Boskovic I, Vukcevic M, Zejak R (2015). The influence of the amorphous SiO2 content on the characteristics of red mud based geopolymers. Third International Conference on Advances in Bio-Informatics and Environmental Engineering - ICABEE 2015. https://doi.org/10.15224/978-1-63248-078-1-89

  28. Rehman SKU, Imtiaz L, Aslam F, Khan MK, Haseeb M, Javed MF, Alabduljabbar H (2020) Experimental investigation of NaOH and KOH mixture in SCBA-based Geopolymer cement composite. Materials 13(15):3437. https://doi.org/10.3390/ma13153437

    Article  CAS  PubMed Central  Google Scholar 

  29. Chen Y, Zhang Y, Chen T, Zhao Y, Bao S (2011) Preparation of eco-friendly construction bricks from hematite tailings. Constr Build Mater 25(4):2107–2111. https://doi.org/10.1016/j.conbuildmat.2010.11.025

    Article  Google Scholar 

  30. Ahmari S, Zhang L (2012) Production of eco-friendly bricks from copper mine tailings through geopolymerization. Constr Build Mater 29:323–331. https://doi.org/10.1016/j.conbuildmat.2011.10.048

    Article  Google Scholar 

  31. Duxson P, Mallicoat SW, Lukey GC, Kriven WM, van Deventer JSJ (2007) The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf A Physicochem Eng Asp 292(1):8–20. https://doi.org/10.1016/j.colsurfa.2006.05.044

    Article  CAS  Google Scholar 

  32. Pelisser F, Guerrino EL, Menger M, Michel MD, Labrincha JA (2013) Micromechanical characterization of metakaolin-based geopolymers. Constr Build Mater 49:547–553. https://doi.org/10.1016/j.conbuildmat.2013.08.081

    Article  CAS  Google Scholar 

  33. Liu Y, Shi C, Zhang Z, Li N, Shi D (2020) Mechanical and fracture properties of ultra-high performance geopolymer concrete: effects of steel fiber and silica fume. Cem Concr Compos 112:103665. https://doi.org/10.1016/j.cemconcomp.2020.103665

    Article  CAS  Google Scholar 

  34. Dimas D, Giannopoulou I, Panias D (2009) Polymerization in sodium silicate solutions: a fundamental process in geopolymerization technology. J Mater Sci 44(14):3719–3730. https://doi.org/10.1007/s10853-009-3497-5

    Article  CAS  Google Scholar 

  35. Davidovits J (2014) Geopolymer Chemistry and Applications, Geopolymer Institute, Third ed 8

  36. Komljenović M, Baščarević Z, Bradić V (2010) Mechanical and microstructural properties of alkali-activated fly ash geopolymers. J Hazard Mater 181(1–3):35–42. https://doi.org/10.1016/j.jhazmat.2010.04.064

    Article  CAS  PubMed  Google Scholar 

  37. Reddy DV, Edouard JB, Sobhan K, Rajpathak SS (2011) Proceeding of 36th conference on 11 OUR WORLD IN CONCR. & STRUCT., Singapore

  38. Xie Z, Xi Y (2001) Hardening mechanisms of an alkaline-activated class F fly ash. Cem Concr Res 31(9):1245–1249. https://doi.org/10.1016/s0008-8846(01)00571-3

    Article  CAS  Google Scholar 

  39. Ridtirud C, Chindaprasirt P, Pimraksa K (2011) Factors affecting the shrinkage of fly ash geopolymers. Int J Miner Metall Mater 18(1):100–104. https://doi.org/10.1007/s12613-011-0407-z

    Article  CAS  Google Scholar 

  40. Yahya Z, Abdullah M, Hussin K, Ismail K, Razak R, Sandu A (2015) Effect of solids-to-liquids, Na2SiO3-to-NaOH and curing temperature on the palm oil boiler ash (Si + Ca) Geopolymerisation system. Materials 8(5):2227–2242. https://doi.org/10.3390/ma8052227

    Article  CAS  PubMed Central  Google Scholar 

  41. Gunasekara MPCM, Law DW (2014) 23rd Australasian Conf. on the Mechanics of Struct. And Mater., Byron Bay, Australia, 113-118

  42. Sukmak P, Horpibulsuk S, Shen SL (2013) Strength development in clay–fly ash geopolymer. Constr Build Mater 40:566–574. https://doi.org/10.1016/j.conbuildmat.2012.11.015

    Article  Google Scholar 

  43. Sathonsaowaphak A, Chindaprasirt P, Pimraksa K (2009) Workability and strength of lignite bottom ash geopolymer mortar. J Hazard Mater 168(1):44–50. https://doi.org/10.1016/j.jhazmat.2009.01.120

    Article  CAS  PubMed  Google Scholar 

  44. Matthew SJ, Mary UC (2015). World of coal ash conference www.worldofcoalash.org

  45. Hardjito, D., & Rangan, B.V. (2005). Development and properties of low-calcium Fly ash-based Geopolymer Concr. Res. Report GC

    Google Scholar 

  46. Kong DLY, Sanjayan JG (2008) Damage behavior of geopolymer composites exposed to elevated temperatures. Cem Concr Compos 30(10):986–991. https://doi.org/10.1016/j.cemconcomp.2008.08.001

    Article  CAS  Google Scholar 

  47. Gao K, Lin KL, Wang D, Hwang CL, Shiu HS, Chang YM, Cheng TW (2014) Effects SiO2/Na2O molar ratio on mechanical properties and the microstructure of nano-SiO2 metakaolin-based geopolymers. Constr Build Mater 53:503–510. https://doi.org/10.1016/j.conbuildmat.2013.12.003

    Article  Google Scholar 

  48. Ghanbari M, Hadian AM, Nourbakhsh AA (2015) Effect of processing parameters on compressive strength of Metakaolinite based Geopolymers: using DOE approach. Procedia Mater Sci 11:711–716. https://doi.org/10.1016/j.mspro.2015.11.047

    Article  CAS  Google Scholar 

  49. Khale D, Chaudhary R (2007) Mechanism of geopolymerization and factors influencing its development: a review. J Mater Sci 42(3):729–746. https://doi.org/10.1007/s10853-006-0401-4

    Article  CAS  Google Scholar 

  50. Xu H, Van Deventer JSJ (2000) The geopolymerisation of alumino-silicate minerals. Int J Miner Process 59(3):247–266. https://doi.org/10.1016/s0301-7516(99)00074-5

    Article  CAS  Google Scholar 

  51. Davidovits J (1991) Geopolymers. J Therm Anal 37(8):1633–1656. https://doi.org/10.1007/bf01912193

    Article  CAS  Google Scholar 

  52. Palomo A, Glasser F (1992) Chemically-bonded cementitious materials based on metakaolin, British ceramic. Transp J 91(4):107–112

    CAS  Google Scholar 

  53. Van Jaarsveld JGS, Van Deventer JSJ, Lorenzen L (1997) The potential use of geopolymeric materials to immobilise toxic metals: part I. theory and applications. Miner Eng 10(7):659–669. https://doi.org/10.1016/s0892-6875(97)00046-0

    Article  Google Scholar 

  54. Davidovits, J. (1982). The need to create a new technical language for the transfer of basic scientific information. Transfer and Exploitation of Scientific and Technical Information Luxembrourg, Commission of the European Communities, 7716, 42 (2007) 729–746

  55. Liu X, Wu Y, Li M, Jiang J, Guo L, Wang W, Duan P (2020) Effects of graphene oxide on microstructure and mechanical properties of graphene oxide-geopolymer composites. Constr Build Mater 247:118544. https://doi.org/10.1016/j.conbuildmat.2020.118544

    Article  CAS  Google Scholar 

  56. Reddy MS, Dinakar P, Rao BH (2016) A review of the influence of source material’s oxide composition on the compressive strength of geopolymer concrete. Microporous Mesoporous Mater 234:12–23. https://doi.org/10.1016/j.micromeso.2016.07.005

    Article  CAS  Google Scholar 

  57. Rao F, Liu Q (2015) Geopolymerization and its potential application in mine tailings consolidation: a review. Miner Process Extr Metall Rev 36(6):399–409. https://doi.org/10.1080/08827508.2015.1055625

    Article  CAS  Google Scholar 

  58. Fernández-Jiménez A, Palomo A (2005) Composition and microstructure of alkali activated fly ash binder: effect of the activator. Cem Concr Res 35(10):1984–1992. https://doi.org/10.1016/j.cemconres.2005.03.003

    Article  CAS  Google Scholar 

  59. Zhang F, Zhang L, Liu M, Mu C, Liang YN, Hu X (2017) Role of alkali cation in compressive strength of metakaolin based geopolymers. Ceram Int 43(4):3811–3817. https://doi.org/10.1016/j.ceramint.2016.12.034

    Article  CAS  Google Scholar 

  60. Xie J, Wang J, Rao R, Wang C, Fang C (2019) Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregate. Compos Part B 164:179–190. https://doi.org/10.1016/j.compositesb.2018.11.067

    Article  CAS  Google Scholar 

  61. Palomo A, Grutzeck MW, Blanco MT (1999) Alkali-activated fly ashes. Cem Concr Res 29(8):1323–1329. https://doi.org/10.1016/s0008-8846(98)00243-9

    Article  CAS  Google Scholar 

  62. Shi C, Jiménez AF, Palomo A (2011) New cements for the 21st century: the pursuit of an alternative to Portland cement. Cem Concr Res 41(7):750–763. https://doi.org/10.1016/j.cemconres.2011.03.016

    Article  CAS  Google Scholar 

  63. Fernandez-Jimenez A, García-Lodeiro I, Palomo A (2006) Durability of alkali-activated fly ash cementitious materials. J Mater Sci 42(9):3055–3065. https://doi.org/10.1007/s10853-006-0584-8

    Article  CAS  Google Scholar 

  64. Palomo A, Blanco-Varela MT, Granizo ML, Puertas F, Vazquez T, Grutzeck MW (1999) Chemical stability of cementitious materials based on metakaolin. Cem Concr Res 29(7):997–1004. https://doi.org/10.1016/s0008-8846(99)00074-5

    Article  CAS  Google Scholar 

  65. Fernández-Jiménez A, Monzó M, Vicent M, Barba A, Palomo A (2008) Alkaline activation of metakaolin–fly ash mixtures: obtain of Zeoceramics and Zeocements. Microporous Mesoporous Mater 108(1–3):41–49. https://doi.org/10.1016/j.micromeso.2007.03.024

    Article  CAS  Google Scholar 

  66. Provis JL, Lukey GC, van Deventer JSJ (2005) Do Geopolymers actually contain Nanocrystalline zeolites? A reexamination of existing results. Chem Mater 17(12):3075–3085. https://doi.org/10.1021/cm050230i

    Article  CAS  Google Scholar 

  67. Villaquirán-Caicedo MA (2019) Studying different silica sources for preparation of alternative waterglass used in preparation of binary geopolymer binders from metakaolin/boiler slag. Constr Build Mater 227:116621. https://doi.org/10.1016/j.conbuildmat.2019.08.002

    Article  CAS  Google Scholar 

  68. Barbosa VF, MacKenzie KJ, Thaumaturgo C (2000) Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. Int J Inorg Mater 2(4):309–317. https://doi.org/10.1016/s1466-6049(00)00041-6

    Article  CAS  Google Scholar 

  69. Fernández-Jiménez A, Palomo A (2003) Characterisation of fly ashes. Potential reactivity as alkaline cements☆. Fuel 82(18):2259–2265. https://doi.org/10.1016/s0016-2361(03)00194-7

    Article  Google Scholar 

  70. Provis JL, Yong CZ, Duxson P, van Deventer JSJ (2009) Correlating mechanical and thermal properties of sodium silicate-fly ash geopolymers. Colloids Surf A Physicochem Eng Asp 336(1–3):57–63. https://doi.org/10.1016/j.colsurfa.2008.11.019

    Article  CAS  Google Scholar 

  71. ZUHUA Z, XIAO Y, HUAJUN Z, YUE C (2009) Role of water in the synthesis of calcined kaolin-based geopolymer. Appl Clay Sci 43(2):218–223. https://doi.org/10.1016/j.clay.2008.09.003

    Article  CAS  Google Scholar 

  72. Ruiz-Santaquiteria C, Skibsted J, Fernández-Jiménez A, Palomo A (2012) Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates. Cem Concr Res 42(9):1242–1251. https://doi.org/10.1016/j.cemconres.2012.05.019

    Article  CAS  Google Scholar 

  73. Van Jaarsveld JGS, van Deventer JSJ, Lukey GC (2003) The characterisation of source materials in fly ash-based geopolymers. Mater Lett 57(7):1272–1280. https://doi.org/10.1016/s0167-577x(02)00971-0

    Article  Google Scholar 

  74. Joshi, S.V., & Kadu, M.S. (2012). Role of alkaline activator in development of eco-friendly fly ash based geo polymer concrete. International Journal of Environmental Science and Development, 417–421. https://doi.org/10.7763/ijesd.2012.v3.258

  75. Lloyd N, Rangan B (2010) 2nd Int. Conf. on Sustainable Constr. Mater. & Technol, Ancona, Italy

    Google Scholar 

  76. Vaidya S, Diaz E, Allouche E (2011) World of coal ash (WOCA) Denver USA

    Google Scholar 

  77. Puligilla S, Mondal P (2013) Role of slag in microstructural development and hardening of fly ash-slag geopolymer. Cem Concr Res 43:70–80. https://doi.org/10.1016/j.cemconres.2012.10.004

    Article  CAS  Google Scholar 

  78. Chindaprasirt P, De Silva P, Sagoe-Crentsil K, Hanjitsuwan S (2012) Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems. J Mater Sci 47(12):4876–4883. https://doi.org/10.1007/s10853-012-6353-y

    Article  CAS  Google Scholar 

  79. Wongpa J, Kiattikomol K, Jaturapitakkul C, Chindaprasirt P (2010) Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete. Mater Des 31(10):4748–4754. https://doi.org/10.1016/j.matdes.2010.05.012

    Article  CAS  Google Scholar 

  80. Diaz EI, Allouche EN, Eklund S (2010) Factors affecting the suitability of fly ash as source material for geopolymers. Fuel 89(5):992–996. https://doi.org/10.1016/j.fuel.2009.09.012

    Article  CAS  Google Scholar 

  81. Gomes KC, Torres SM, de Barros S, Barbosa NP (2008) ETDCM8- 8th seminar on experimental techniques and Design in Composite Materials

    Google Scholar 

  82. Gomes KC, Torres SM, de Barros S, Barbosa NP (2009). in: Solid Mechanics in Brazil 09 edited by H. S. C. Mattos, M. Alves, Associação Brasileira de Engenharia e Ciências Mecânicas. 2

  83. Komnitsas K, Zaharaki D (2009) in: Structure, processing, properties and industrial applications PART II: Manufacture and properties of geopolymers, edited by J. Provis and Jannie S.J. van Deventer, CRC Press, Woodhead Publishing Ltd, Oxford 343

  84. Gomes KC, Lima GST, Torres SM, de Barros SR, Vasconcelos IF, Barbosa NP (2010) Iron distribution in Geopolymer with ferromagnetic rich precursor. Mater Sci Forum 643:131–138. https://doi.org/10.4028/www.scientific.net/msf.643.131

    Article  CAS  Google Scholar 

  85. Puertas F, Martı́nez-Ramı́rez S, Alonso S, Vázquez T (2000) Alkali-activated fly ash/slag cements. Cem Concr Res, 30(10), 1625–1632. https://doi.org/10.1016/s0008-8846(00)00298-2

  86. Wang Y, Liu X, Zhang W, Li Z, Zhang Y, Li Y, Ren Y (2020) Effects of Si/Al ratio on the efflorescence and properties of fly ash based geopolymer. J Clean Prod 244:118852. https://doi.org/10.1016/j.jclepro.2019.118852

    Article  CAS  Google Scholar 

  87. Gasteiger HA, Frederick WJ, Streisel RC (1992) Solubility of aluminosilicates in alkaline solutions and a thermodynamic equilibrium model. Ind Eng Chem Res 31(4):1183–1190. https://doi.org/10.1021/ie00004a031

    Article  CAS  Google Scholar 

  88. Safari Z, Kurda R, Al-Hadad B, Mahmood F, Tapan M (2020) Mechanical characteristics of pumice-based geopolymer paste. Resour Conserv Recycl 162:105055. https://doi.org/10.1016/j.resconrec.2020.105055

    Article  Google Scholar 

  89. Hardjito D, Cheak CC, Lee Ing CH (2008) Strength and setting times of low calcium Fly ash-based Geopolymer mortar. Mod Appl Sci 2(4). https://doi.org/10.5539/mas.v2n4p3

  90. Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV (2005) Fly ash-based Geopolymer concrete. Aust J Struct Eng 6(1):77–86. https://doi.org/10.1080/13287982.2005.11464946

    Article  Google Scholar 

  91. Shah SP, Wang K (2009) Development of ‘green’ cement for sustainable concrete using cement kiln dust and Fly ash, International Workshop on Sustainable Development and Concrete Technology, 15–23

  92. Davidovits J (1999) Chemistry of Geopolymeric systems, terminology in: proceedings of 99 international conference. eds. Joseph Davidovits, R. Davidovits & C. James, France

  93. Davidovits J (1994, October) Properties of geopolymer cements. In First international conference on alkaline cements and concretes (Vol. 1, pp. 131-149). Kiev State Technical University, Ukraine: Scientific Research Institute on Binders and Materials

  94. Rangan BV (2008) in: Low-calcium, fly-ash-based geopolymer concrete, concrete construction engineering handbook, Taylor and Francis Group, LLC, 1–19

  95. Bondar D, Lynsdale CJ, Milestone NB, Hassani N, Ramezanianpour AA (2011) Effect of type, form, and dosage of activators on strength of alkali-activated natural pozzolans. Cem Concr Compos 33(2):251–260. https://doi.org/10.1016/j.cemconcomp.2010.10.021

    Article  CAS  Google Scholar 

  96. Bignozzi MC, Manzi S, Natali ME, Rickard WDA, van Riessen A (2014) Room temperature alkali activation of fly ash: the effect of Na 2 O/SiO 2 ratio. Constr Build Mater 69:262–270. https://doi.org/10.1016/j.conbuildmat.2014.07.062

    Article  CAS  Google Scholar 

  97. Malkawi AB, Nuruddin MF, Fauzi A, Almattarneh H, Mohammed BS (2016) Effects of alkaline solution on properties of the HCFA Geopolymer mortars. Procedia Engineering 148:710–717. https://doi.org/10.1016/j.proeng.2016.06.581

    Article  CAS  Google Scholar 

  98. Rattanasak U, Chindaprasirt P (2009) Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner Eng 22(12):1073–1078. https://doi.org/10.1016/j.mineng.2009.03.022

    Article  CAS  Google Scholar 

  99. Nath P, Sarker PK (2014) Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr Build Mater 66:163–171. https://doi.org/10.1016/j.conbuildmat.2014.05.080

    Article  Google Scholar 

  100. Feuerborn HJ (2005, November). Coal ash utilisation over the world and in Europe. In Workshop on environmental and health aspects of coal ash utilization (Vol. 5)

  101. Albitar M, Mohamed Ali MS, Visintin P, Drechsler M (2015) Effect of granulated lead smelter slag on strength of fly ash-based geopolymer concrete. Constr Build Mater 83:128–135. https://doi.org/10.1016/j.conbuildmat.2015.03.009

    Article  Google Scholar 

  102. Nuaklong P, Jongvivatsakul P, Pothisiri T, Sata V, Chindaprasirt P (2020) Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete. J Clean Prod 252:119797. https://doi.org/10.1016/j.jclepro.2019.119797

    Article  CAS  Google Scholar 

  103. Okoye FN, Durgaprasad J, Singh NB (2016) Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete. Ceram Int 42(2):3000–3006. https://doi.org/10.1016/j.ceramint.2015.10.084

    Article  CAS  Google Scholar 

  104. Wang YS, Alrefaei Y, Dai JG (2020) Influence of coal fly ash on the early performance enhancement and formation mechanisms of silico-aluminophosphate geopolymer. Cem Concr Res 127:105932. https://doi.org/10.1016/j.cemconres.2019.105932

    Article  CAS  Google Scholar 

  105. Fairbairn EMR, Americano BB, Cordeiro GC, Paula TP, Toledo Filho RD, Silvoso MM (2010) Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits. J Environ Manag 91(9):1864–1871. https://doi.org/10.1016/j.jenvman.2010.04.008

    Article  CAS  Google Scholar 

  106. Patel YJ, Shah N (2018) Development of self-compacting geopolymer concrete as a sustainable construction material. Sustainable Environment Research 28(6):412–421. https://doi.org/10.1016/j.serj.2018.08.004

    Article  CAS  Google Scholar 

  107. Kusbiantoro A, Nuruddin MF, Shafiq N, Qazi SA (2012) The effect of microwave incinerated rice husk ash on the compressive and bond strength of fly ash based geopolymer concrete. Constr Build Mater 36:695–703. https://doi.org/10.1016/j.conbuildmat.2012.06.064

    Article  Google Scholar 

  108. Songpiriyakij S, Kubprasit T, Jaturapitakkul C, Chindaprasirt P (2010) Compressive strength and degree of reaction of biomass- and fly ash-based geopolymer. Constr Build Mater 24(3):236–240. https://doi.org/10.1016/j.conbuildmat.2009.09.002

    Article  Google Scholar 

  109. Law DW, Adam AA, Molyneaux TK, Patnaikuni I, Wardhono A (2014) Long term durability properties of class F fly ash geopolymer concrete. Mater Struct 48(3):721–731. https://doi.org/10.1617/s11527-014-0268-9

    Article  CAS  Google Scholar 

  110. Ryu GS, Lee YB, Koh KT, Chung YS (2013) The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr Build Mater 47:409–418. https://doi.org/10.1016/j.conbuildmat.2013.05.0

    Article  Google Scholar 

  111. Nuruddin F, Demie S, Memon FA, Shafiq N (2011) Effect of superplasticizer and NaOH molarity on workability, compressive strength and microstructure properties of self-compacting geopolymer concrete. World Acad Sci Eng Technol 75

  112. Parthiban D, Vijayan DS, Sanjay Kumar R, Santhu AP, Abraham Cherian G, Ashiq M (2020) Performance evaluation of Fly ash based GPC with partial replacement of RHA as a cementitious material. Materials today: proceedings, 33, 550–558 33:550–558. https://doi.org/10.1016/j.matpr.2020.05.244

  113. Vora PR, Dave UV (2013) Parametric studies on compressive strength of Geopolymer concrete. Procedia Engineering 51:210–219. https://doi.org/10.1016/j.proeng.2013.01.030

    Article  CAS  Google Scholar 

  114. Chindaprasirt P, Chalee W (2014) Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site. Constr Build Mater 63:303–310. https://doi.org/10.1016/j.conbuildmat.2014.04.010

    Article  Google Scholar 

  115. Chi M (2017) Effects of the alkaline solution/binder ratio and curing condition on the mechanical properties of alkali-activated fly ash mortars. Sci Eng Compos Mater 24(5):773–782. https://doi.org/10.1515/secm-2015-0305

    Article  CAS  Google Scholar 

  116. Pham TM (2020) Enhanced properties of high-silica rice husk ash-based geopolymer paste by incorporating basalt fibers. Constr Build Mater 245:118422

    Article  Google Scholar 

  117. Akbar A, Farooq F, Shafique M, Aslam F, Alyousef R, Alabduljabbar H (2021) Sugarcane bagasse ash-based engineered geopolymer mortar incorporating propylene fibers. Journal of Building Engineering 33:101492. https://doi.org/10.1016/j.jobe.2020.101492

    Article  Google Scholar 

  118. Wan Q, Rao F, Song S, García RE, Estrella RM, Patiño CL, Zhang Y (2017) Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios. Cem Concr Compos 79:45–52. https://doi.org/10.1016/j.cemconcomp.2017.01.014

    Article  CAS  Google Scholar 

  119. Atmaja L, Fansuri H, Maharani A (2011) Crystalline phase reactivity in the synthesis of fly ash-based geopolymer. Indian J Chem 11(1):90–95. https://doi.org/10.22146/ijc.21426

    Article  Google Scholar 

  120. Thakur RN, Ghosh S (2009) Effect of mix composition on compressive strength and microstructure of fly ash based geopolymer composites. ARPN Journal of Engineering and Applied Sciences 4(4):68–74

    Google Scholar 

  121. Ghosh K, Ghosh P (2012) Effect of synthesizing parameters on compressive strength of flyash based geopolymer paste. Int J Struct Civ Eng 1(8):1–11

    Google Scholar 

  122. Abbas R, Khereby MA, Ghorab HY, Elkhoshkhany N (2020) Preparation of geopolymer concrete using Egyptian kaolin clay and the study of its environmental effects and economic cost. Clean Techn Environ Policy 22(3):669–687. https://doi.org/10.1007/s10098-020-01811-4

    Article  CAS  Google Scholar 

  123. Khan KA, Raut A, Chandrudu CR, Sashidhar C (2021) Design and development of sustainable geopolymer using industrial copper byproduct. J Clean Prod 278:123565. https://doi.org/10.1016/j.jclepro.2020.123565

    Article  CAS  Google Scholar 

  124. Bondar D (2013, August) Geo-polymer concrete as a new type of sustainable construction materials. In Proceedings of the Third International Conference on Sustainable Construction Materials and Technologies (ICSCMT) (pp. 18–21)

  125. Nath SK, Kumar S (2020) Role of particle fineness on engineering properties and microstructure of fly ash derived geopolymer. Constr Build Mater 233:117294. https://doi.org/10.1016/j.conbuildmat.2019.117294

    Article  CAS  Google Scholar 

  126. McCormick AV, Bell AT, Radke CJ (1989) Multinuclear NMR investigation of the formation of aluminosilicate anions. J Phys Chem 93(5):1741–1744. https://doi.org/10.1021/j100342a015

    Article  CAS  Google Scholar 

  127. Lee WKW, van Deventer JSJ (2002) Structural reorganisation of class F fly ash in alkaline silicate solutions. Colloids Surf A Physicochem Eng Asp 211(1):49–66. https://doi.org/10.1016/s0927-7757(02)00237-6

    Article  CAS  Google Scholar 

  128. Sathia, R., Babu, K.G., & Santhanam, M. (2008, November). Durability study of low calcium fly ash geopolymer concrete. In The 3rd ACF international conference-ACF/VCA (Vol. 2008). Indian Institute of Technology Madras Chennai, India

  129. Chindaprasirt P, Chareerat T, Sirivivatnanon V (2007) Workability and strength of coarse high calcium fly ash geopolymer. Cem Concr Compos 29(3):224–229. https://doi.org/10.1016/j.cemconcomp.2006.11.002

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I wish to record my deep sense of gratitude and thanks to my Ph.D. supervisor Dr. Zhang Pu, professor, civil department, Zhengzhou University P.R. China for his keen interest and guidance during the writing of this review article.

Author information

Authors and Affiliations

Authors

Contributions

All authors whose names appear on the submission made substantial contributions to the conception, analysis, interpretation of data and writing/revision of the article.

Corresponding author

Correspondence to Ahmad Jan.

Ethics declarations

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jan, A., Pu, Z., Khan, K.A. et al. A Review on the Effect of Silica to Alumina Ratio, Alkaline Solution to Binder Ratio, Calcium Oxide + Ferric Oxide, Molar Concentration of Sodium Hydroxide and Sodium Silicate to Sodium Hydroxide Ratio on the Compressive Strength of Geopolymer Concrete. Silicon 14, 3147–3162 (2022). https://doi.org/10.1007/s12633-021-01130-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01130-3

Keywords

Navigation