Skip to main content

Advertisement

Log in

Photovoltaic Partner Selection for High-Efficiency Photovoltaic-Electrolytic Water Splitting Systems: Brief Review and Perspective

  • Short Communication
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Photovoltaic-electrolysis water splitting (PV-EWS) is the most promising approach for high solar-to-hydrogen (STH) efficiency. The present PV-EWS systems achieve the highest STH performance by using a III-V triple-junction configuration, which, however, involves a complex and expensive manufacture process. Therefore, in this work, we demonstrate a III–V double junction device that can be used as an alternative to the III–V triple-junction device for high STH conversion efficiency of the PV-EWS systems. We estimate the STH performance via coupling world-recorded multi-junction photovoltaic (PV) and our experimented cell configurations with an EWS system. The results show that the III–V double junction, owing to the good trade-off between the efficiency loss and compensation, exhibits a higher STH efficiency than the III–V triple-junction. Furthermore, strategies for improving the efficiency of the III–V double junction device for low-cost PV-EWS system are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42(6):2294–2320

    Article  CAS  PubMed  Google Scholar 

  2. Koumi Ngoh S, Njomo D (2012) An overview of hydrogen gas production from solar energy. Renew. Sust. Energ. Rev. 16(9):6782–6792

    Article  CAS  Google Scholar 

  3. Okamoto S, Deguchi M, Yotsuhashi S (2017) Modulated III–V triple-junction solar cell wireless device for efficient water splitting. J. Phys. Chem. C 121(3):1393–1398

    Article  CAS  Google Scholar 

  4. Qi J, Zhang W, Cao R (2018) Solar-to-hydrogen energy conversion based on water splitting. Adv. Energy Mater. 8(5):1701620

    Article  Google Scholar 

  5. M. Ruth, F. Joseck (2011). Hydrogen Threshold Cost Calculation. United States Department of Energy

  6. E. Miller, C. Ainscough, A. Talapatra (2014). Hydrogen Production Status 2006–2013. United States Department of Energy

  7. Yin Z, Fan R, Huang G, Shen M (2018) 11.5% efficiency of TiO2 protected and Pt catalyzed n(+)np(+)-Si photocathodes for photoelectrochemical water splitting: manipulating ting the Pt distribution and Pt/Si contact. Chem. Commun. 54(5):543–546

    Article  CAS  Google Scholar 

  8. Kast MG, Enman LJ, Gurnon NJ, Nadarajah A, Boettcher SW (2014) Solution-deposited F:SnO(2)/TiO(2) as a base-stable protective layer and antireflective coating for microtextured buried-junction H(2)-evolving Si photocathodes. ACS Appl. Mater. Interfaces 6(24):22830–22837

    Article  CAS  PubMed  Google Scholar 

  9. Fan R, Dong W, Fang L, Zheng F, Shen M (2017) More than 10% efficiency and one-week stability of Si photocathodes for water splitting by manipulating the loading of the Pt catalyst and TiO2 protective layer. J. Mater. Chem. A 5(35):18744–18751

    Article  CAS  Google Scholar 

  10. Vanka S, Arca E, Cheng S, Sun K, Botton GA, Teeter G, Mi Z (2018) High efficiency Si photocathode protected by multifunctional GaN nanostructures. Nano. Lett. 18(10):6530–6537

    Article  CAS  PubMed  Google Scholar 

  11. Vijselaar W, Tiggelaar RM, Gardeniers H, Huskens J (2018) Efficient and stable silicon microwire photocathodes with a nickel silicide interlayer for operation in strongly alkaline solutions. ACS Energy Lett. 3(5):1086–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boettcher SW, Warren EL, Putnam MC, Santori EA, Turner-Evans D, Kelzenberg MD, Walter MG, McKone JR, Brunschwig BS, Atwater HA, Lewis NS (2011) Photoelectrochemical hydrogen evolution using Si microwire arrays. J. Am. Chem. Soc. 133(5):1216–1219

    Article  CAS  PubMed  Google Scholar 

  13. Ronglei F, Chengshuang T, Yu X, Xiaodong S, Xiaodong W, Mingrong S (2016) Surface passivation and protection of Pt loaded multicrystalline pn+ silicon photocathodes by atmospheric plasma oxidation for improved solar water splitting. Appl. Phys. Lett. 109:233901

    Article  Google Scholar 

  14. Verlage E, Hu S, Liu R, Jones RJR, Sun K, Xiang C, Lewis NS, Atwater HA (2015) A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III–V light absorbers protected by amorphous TiO2 films. Energy Environ. Sci. 8(11):3166–3172

    Article  CAS  Google Scholar 

  15. Lin GH, Kapur M, Kainthla RC, Bockris JOM (1989) One step method to produce hydrogen by a triple stack amorphous silicon solar cell. Appl. Phys. Lett. 55:386–387

    Article  CAS  Google Scholar 

  16. Luo J, Im J-H, Mayer MT, Schreier M, Nazeeruddin MK, Park N-G, Tilley SD, Fan HJ, Gratzel M (2014) Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345(6204):1593–1596

    Article  CAS  PubMed  Google Scholar 

  17. Urbain F, Smirnov V, Becker J-P, Rau U, Finger F, Ziegler J, Kaiser B, Jaegermann W (2014) a-Si:H/μc-Si:H tandem junction based photocathodes with high open-circuit voltage for efficient hydrogen production. J. Mater. Res. 29(22):2605–2614

    Article  CAS  Google Scholar 

  18. Vasudevan R, Thanawala Z, Han L, Buijs T, Tan H, Deligiannis D, Perez-Rodriguez P, Digdaya IA, Smith WA, Zeman M, Smets AHM (2016) A thin-film silicon/silicon hetero-junction hybrid solar cell for photoelectrochemical water-reduction applications. Sol. Energy Mater. Sol. Cells 150:82–87

    Article  CAS  Google Scholar 

  19. Jia J, Seitz LC, Benck JD, Huo Y, Chen Y, Ng JW, Bilir T, Harris JS, Jaramillo TF (2016) Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30. Nat. Commun. 7:13237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nakamura A, Ota Y, Koike K, Hidaka Y, Nishioka K, Sugiyama M, Fujii K (2015) A 24.4% solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells. Appl. Phys. Express 8(10):107101

    Article  Google Scholar 

  21. Bonke SA, Wiechen M, MacFarlane DR, Spiccia L (2015) Renewable fuels from concentrated solar power: towards practical artificial photosynthesis. Energy Environ Sci 8(9):2791–2796

    Article  CAS  Google Scholar 

  22. Licht S, Wang B, Mukerji S (2000) Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis. J. Phys. Chem. B 104:8920–8924

    Article  CAS  Google Scholar 

  23. Peharz G, Dimroth F, Wittstadt U (2007) Solar hydrogen production by water splitting with a conversion efficiency of 18%. Int. J. Hydrog. Energy 32(15):3248–3252

    Article  CAS  Google Scholar 

  24. Perez-Rodriguez P, Vijselaar W, Huskens J, Stam M, Falkenberg M, Zeman M, Smith W, Smets AHM (2019) Designing a hybrid thin-film/wafer silicon triple photovoltaic junction for solar water splitting. Prog. Photovolt. Res. Appl. 27(3):245–254

    Article  CAS  Google Scholar 

  25. Chang WJ, Lee KH, Ha H, Jin K, Kim G, Hwang ST, Lee HM, Ahn SW, Yoon W, Seo H, Hong JS, Go YK, Ha JI, Nam KT (2017) Design principle and loss engineering for photovoltaic-electrolysis cell system. ACS Omega 2(3):1009–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ager JW, Shaner MR, Walczak KA, Sharp ID, Ardo S (2015) Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ. Sci. 8(10):2811–2824

    Article  CAS  Google Scholar 

  27. Khaselev O, Turner JA (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280:425–427

    Article  CAS  PubMed  Google Scholar 

  28. Green MA, Dunlop ED, Levi DH, Hohl-Ebinger J, Yoshita M, Ho-Baillie AWY (2019) Solar cell efficiency tables (version 54). Prog. Photovolt. Res. Appl. 27(7):565–575

    Article  Google Scholar 

  29. Dotan H, Mathews N, Hisatomi T, Gratzel M, Rothschild A (2014) On the solar to hydrogen conversion efficiency of photoelectrodes for water splitting. J. Phys. Chem. Lett. 5(19):3330–3334

    Article  CAS  PubMed  Google Scholar 

  30. Bertness KA, Kurtz SR, Friedman DJ, Kibbler AE, Kramer C, Olson JM (1994) 29.5%-efficient GaInP/GaAs tandem solar cells. Appl. Phys. Lett. 65(8):989–991

    Article  CAS  Google Scholar 

  31. Green MA, Emery K, Hishikawa Y, Warta W (2010) Solar cell efficiency tables (version 35). Prog. Photovolt. Res. Appl. 18(2):144–150

    Article  CAS  Google Scholar 

  32. Essig S, Allebé C, Remo T, Geisz JF, Steiner MA, Horowitz K, Barraud L, Ward JS, Schnabel M, Descoeudres A, Young DL, Woodhouse M, Despeisse M, Ballif C, Tamboli A (2017) Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nat. Energy 2(9):17144

    Article  CAS  Google Scholar 

  33. Cariou R, Benick J, Feldmann F, Höhn O, Hauser H, Beutel P, Razek N, Wimplinger M, Bläsi B, Lackner D, Hermle M, Siefer G, Glunz SW, Bett AW, Dimroth F (2018) III–V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration. Nat. Energy 3(4):326–333

    Article  CAS  Google Scholar 

  34. Green MA, Emery K, Hishikawa Y, Warta W (2010) Solar cell efficiency tables (version 36). Prog. Photovolt. Res. Appl. 18(5):346–352

    Article  Google Scholar 

  35. M.W. Wanlass, S. P. Ahrenkiel, R.K. Ahrenkiel, D.S. Albin, J.J. Carapella, A. Duda, J.F. Geisz, S. Kurtz, T. Moriarty, R.J. Wehrer, B. Wernsman. Lattice-mismatched approaches for high-performance, III-V photovoltaic energy converters. Proc. 31st IEEE PVSC, Lake Buena Vista, FL, 1/3–7/05, IEEE Catalog No. 05CH37608C, ISBN: 0-7803-8708-2

  36. García-Valverde R, Espinosa N, Urbina A (2011) Optimized method for photovoltaic-water electrolyser direct coupling. Int. J. Hydrog. Energy 36(17):10574–10586

    Article  Google Scholar 

  37. Gibson TL, Kelly NA (2010) Predicting efficiency of solar powered hydrogen generation using photovoltaic-electrolysis devices. Int. J. Hydrog. Energy 35(3):900–911

    Article  CAS  Google Scholar 

  38. Solmecke H, Just O, Hackstein D (2000) Comparison of solar hydrogen storage systems with and without power-electronic DC-DC converters. Renew. Energy 19:333–338

    Article  CAS  Google Scholar 

  39. Garciavalverde R, Miguel C, Martinezbejar R, Urbina A (2008) Optimized photovoltaic generator–water electrolyser coupling through a controlled DC–DC converter. Int. J. Hydrog. Energy 33(20):5352–5362

    Article  CAS  Google Scholar 

  40. Arriaga L, Martinez W, Cano U, Blud H (2007) Direct coupling of a solar-hydrogen system in Mexico. Int. J. Hydrog. Energy 32(13):2247–2252

    Article  CAS  Google Scholar 

  41. Huo P, Lombardero I, García I, Rey-Stolle I (2019) Enhanced performance of GaInP/GaAs/Ge solar cells under high concentration through Pd/Ge/Ti/Pd/Al grid metallization. Prog. Photovolt. Res. Appl. 27(9):789–797

    Article  CAS  Google Scholar 

  42. A.W. Bett, C. Baur, F. Dimroth, G. Lange, M. Meusel, S. van Riesen, G. Siefer (2003). Flatcon™-Modules: Technology and Characterisation, 3rd World Conference on Photovoltaic Energy Conversion

  43. H. Lerchenmuller, A. W. Bett, J. Jaus, G. Willeke 2005. Cost and Market Perspectives for FLATCON®-system, 3rd Conference Solar Concentrator for Electricity or Hydrogen.

  44. Lin Q, Huang H, Jing Y, Fu H, Chang P, Li D, Yao Y, Fan Z (2014) Flexible photovoltaic technologies. J. Mater. Chem. C 2(7):1233

    Article  CAS  Google Scholar 

  45. Takamoto T, Kaneiwa M, Imaizumi M, Yamaguchi M (2005) InGaP/GaAs-based multijunction solar cells. Prog. Photovolt. Res. Appl. 13(6):495–511

    Article  CAS  Google Scholar 

  46. Shahrjerdi D, Bedell SW, Bayram C, Lubguban CC, Fogel K, Lauro P, Ott JA, Hopstaken M, Gayness M, Sadana D (2013) Ultralight high-efficiency flexible InGaP/(in)GaAs tandem solar cells on plastic. Adv. Energy Mater. 3(5):566–571

    Article  CAS  Google Scholar 

  47. Rongé J, Bosserez T, Huguenin L, Dumortier M, Haussener S, Martens JA (2015) Solar hydrogen reaching maturity, oil & gas science and technology. Revue d’IFP Energies Nouvelles 70(5):863–876

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Postdoctoral Research Program of Sungkyunkwan University (2021).

Contributed Data or Analysis Tools

Author 3: Junsin Yi.

1. Conceived and designed the analysis.

2. Collected the data.

3. Performed the analysis.

4. Scientific discussions.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Funding

This work was supported by the Postdoctoral Research Program of Sungkyunkwan University (2021).

Author information

Authors and Affiliations

Authors

Contributions

Author 1: Duy Phong Pham.

1. Conceived and designed the analysis.

2. Collected the data.

3. Performed the analysis.

4. Wrote the paper.

Author 2: Sunhwa Lee.

Corresponding authors

Correspondence to Duy Phong Pham or Junsin Yi.

Ethics declarations

We confirm that all authors consent to ethical standards.

Consent to Participate

We confirm that all authors consent to participation.

Consent for Publication

We confirm that all authors consent to publication.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, D.P., Lee, S. & Yi, J. Photovoltaic Partner Selection for High-Efficiency Photovoltaic-Electrolytic Water Splitting Systems: Brief Review and Perspective. Silicon 14, 753–760 (2022). https://doi.org/10.1007/s12633-021-01220-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01220-2

Keywords

Navigation