Skip to main content

Advertisement

Log in

High Modulation Efficient Silicon MZM with Core-based Split PN Junction Phase Shifter

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

A silicon Mach Zehnder modulator (MZM) with high modulation efficiency was designed using a core-based split PN junction phase shifter. The novel design of the phase shifter improves the optical confinement, reduces the optical loss. The use of the travelling wave electrode improves the coupling between the microwave and optical mode. The proposed design achieved a high modulation efficiency of 0.75V.cm with 1.5mm phase shifter. With this modulation efficiency, an extinction ratio of 7.37dB and 1.69 × 10− 12 bit error rate was achieved at a bit rate of 90Gbps. The energy per bit transmission of the data was 3.91pJ/bit. The phase shifter in silicon MZM (PS-MZM) was analysed for its supporting transmission distance and bit rate at ITU-T recommended DWDM wavelength of 1552.5 nm. It ensures that PS-MZM is suitable for on-chip and off-chip communication data centre application in unguided (free space optics (FSO)) and guided (optical fibre) transmission medium. The proposed device can also be implemented in delay lines, switches etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cisco Annual Internet Report - Cisco Annual Internet Report (2018–2023) White Paper. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.htmlhttps://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.htmlhttps://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html. Accessed 14 April 2021

  2. Subbaraman H, Xu X, Hosseini A, et al. (2015) Recent advances in silicon-based passive and active optical interconnects. Opt Express 23:2487–2511. https://doi.org/10.1364/OE.23.002487

    Article  CAS  Google Scholar 

  3. Thomson D, Zilkie A, Bowers JE, et al. (2016) Roadmap on silicon photonics. J Opt 18:073003. https://doi.org/10.1088/2040-8978/18/7/073003

    Article  Google Scholar 

  4. Xu Q, Manipatruni S, Schmidt B et al (2007) 12.5 Gbit/s silicon micro-ring silicon modulators. Conf Lasers Electro-Optics (CLEO) 15:430. https://doi.org/10.1109/CLEO.2007.4453064

    Google Scholar 

  5. Chen L, Preston K, Manipatruni S, et al. (2009) Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors. Opt Express 17:15248–15256. https://doi.org/10.1364/OE.17.015248

    Article  CAS  Google Scholar 

  6. Gardes FY, Brimont A, Sanchis P, et al. (2009) High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode. Opt Express 17:21986–91. https://doi.org/10.1364/OE.17.021986

    Article  CAS  Google Scholar 

  7. Sugesh RJ, Sivasubramanian A (2018) Redesigning Mach-Zehnder modulator with ring resonators. Opt Microwave Tech 468:185–191. https://doi.org/10.1007/978-981-10-7293-2_20

    Article  Google Scholar 

  8. Alloatti L, Palmer R, Diebold S, et al. (2014) 100 GHz silicon–organic hybrid modulator. Light Sci Appl 3:173. https://doi.org/10.1038/lsa.2014.54

    Article  Google Scholar 

  9. Youngblood N, Anugrah Y, Ma R, Koester SJ, et al. (2014) Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Lett 14:2741–2746. https://doi.org/10.1021/nl500712u

    Article  CAS  Google Scholar 

  10. Zhang X, Chung CJ, Hosseini A, et al. (2015) High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide. J Light Technol 34:2941–2951. https://doi.org/10.1109/JLT.2015.2471853

    Article  Google Scholar 

  11. Baek J, You JB, Yu K (2015) Free-carrier electro-refraction modulation based on a silicon slot waveguide with ITO. Opt Express 23:15863–15876. https://doi.org/10.1364/OE.23.015863

    Article  CAS  Google Scholar 

  12. Dalir H, Xia Y, Wang Y, Zhang X (2016) Athermal broadband graphene optical modulator with 35 GHz speed. Acs Photonics 3:1564–1568. https://doi.org/10.1021/acsphotonics.6b00398

    Article  CAS  Google Scholar 

  13. Rajput S, Kaushik V, Jain S, et al. (2019) Slow light enhanced phase shifter based on low-loss silicon-ITO hollow waveguide. IEEE Photonics J 11:1–8. https://doi.org/10.1109/JPHOT.2019.2895699

    Article  CAS  Google Scholar 

  14. Rajput S, Kaushik V, Jain S, et al. (2019) Optical modulation in hybrid waveguide based on Si-ITO heterojunction. J Light Technol 38:1365–1371. https://doi.org/10.1109/JLT.2019.2953690

    Article  Google Scholar 

  15. Soref RI, Bennett BR (1987) Electrooptical effects in silicon. IEEE J Quantum Electron 23:123–129. https://doi.org/10.1109/JQE.1987.1073206

    Article  Google Scholar 

  16. Liu A, Liao L, Rubin D et al (2007) High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt Express 15:660–668. https://doi.org/10.1364/OE.15.000660

    Article  Google Scholar 

  17. Ziebell M, Marris-Morini D, Rasigade G et al (2012) 40 Gbit/s low-loss silicon optical modulator based on a pipin diode. Opt Express 20:10591–10596. https://doi.org/10.1364/OE.20.010591

    Article  CAS  Google Scholar 

  18. Dong P, Chen L, Chen YK (2012) High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators. Opt Express 20:6163–6169. https://doi.org/10.1364/OE.20.006163

    Article  CAS  Google Scholar 

  19. Xu H, Xiao X, Li X (2012) High speed silicon Mach-Zehnder modulator based on interleaved PN junctions. Opt Express 20:15093–15099. https://doi.org/10.1364/OE.20.015093

    Article  CAS  Google Scholar 

  20. Rao A, Patil A, Rabiei P (2016) High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz. Opt Lett 41:5700–5703. https://doi.org/10.1364/OL.41.005700

    Article  CAS  Google Scholar 

  21. Rosa MF, Rathgeber L, Elster R, et al. (2017) Design of a carrier-depletion Mach-Zehnder modulator in 250 nm silicon-on-insulator technology. Adv Radio Sci 15:269. https://doi.org/10.5194/ars-15-269-2017

    Article  Google Scholar 

  22. Ang TY, Png CE, Lim ST (2017) Numerical analysis and optimization of high-speed silicon microring resonator modulators using high-performance carrier-depletion phase shifters. Silicon Photonics XII 10108:1010804. https://doi.org/10.1117/12.2252108

    Article  Google Scholar 

  23. Wang C, Zhang M, Stern B, Lipson M, Lončar M (2018) Nanophotonic lithium niobate electro-optic modulators. Opt express 26:1547–1555. https://doi.org/10.1364/OE.26.001547

    Article  Google Scholar 

  24. de Farias GB, Bustamante YR, de Andrade HA (2018) Demonstration of> 48GHz single-drive push-pull silicon mach-zehnder modulator with low V π L 2018 IEEE 15th Int Conf on Gr IV Photonics (GFP) 1–2. https://doi.org/10.1109/GROUP4.2018.8478725

  25. Makarov M, Barabanenkov M, Italyantsev A (2020) Simulation of Mach–Zehnder modulator with ultra-responsive phase shifters. 2020 Photonics North 1. https://doi.org/10.1109/PN50013.2020.9167014

  26. He M, Xu M, Ren Y, et al. (2019) High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s- 1 and beyond. Nat Photonics 13:359–364. https://doi.org/10.1038/s41566-019-0378-6

    Article  CAS  Google Scholar 

  27. Ogawa K, Goi K, Ishikura N, et al. (2016) Silicon-based phase shifters for high figure of merit in optical modulation. Silicon Photonics XI 9752:975202. https://doi.org/10.1117/12.2218184

    Article  Google Scholar 

  28. Yong Z, Sacher WD, Huang Y et al (2017) Efficient single-drive push-pull silicon Mach-Zehnder modulators with U-shaped PN junctions for the O-band. Optical Fiber Communication Conference OSA Tu2H-2. https://doi.org/10.1364/OFC.2017.Tu2H.2

  29. Palmer R, Alloatti L, Korn D, et al. (2013) Silicon-organic hybrid MZI modulator generating OOK, BPSK and 8-ASK signals for up to 84 Gbit/s. IEEE Photonics J 5:6600907. https://doi.org/10.1109/JPHOT.2013.2258142

    Article  Google Scholar 

  30. Jain S, Rajput S, Kaushik V, et al. (2019) High speed optical modulator based on silicon slotted-rib waveguide. Opt Commun 434:49–53. https://doi.org/10.1016/j.optcom.2018.10.028

    Article  CAS  Google Scholar 

  31. Jain S, Rajput S, Kaushik V, et al. (2020) Efficient optical modulation with high data-rate in silicon based laterally split vertical pn junction. IEEE J Quantum Electron 56:1–7. https://doi.org/10.1109/JQE.2020.2966781

    Article  Google Scholar 

  32. Watts MR, Zortman WA, Trotter DC, Young RW, Lentine AL (2010) Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator. IEEE J Select Top in Quantum Electronics 16:159–64. https://doi.org/10.1109/JSTQE.2009.2035059

    Article  CAS  Google Scholar 

  33. Zhou Y, Zhou L, Zhu H, et al. (2015) Optimized silicon MZI modulators for 50 Gbit/s OOK and 40 Gbit/s BPSK modulation. Opto-Electronics and Communications Conference (OECC), 1–3. https://doi.org/10.1109/OECC.2015.7340098

  34. Zhou Y, Zhou L, Zhu H, et al. (2016) Modeling and optimization of a single-drive push–pull silicon Mach–Zehnder modulator. Photonics Res 4:153–61. https://doi.org/10.1364/PRJ.4.000153

    Article  CAS  Google Scholar 

  35. Almeida VR, Xu Q, Barrios CA, Lipson M (2004) Guiding and confining light in void nanostructure. Opt Lett 29(11):1209–11. https://doi.org/10.1364/OL.29.001209

    Article  Google Scholar 

  36. RG JS, Sivasubramanian A (2021) Modelling and analysis of a corrugated PN junction phase shifter in silicon MZM. Silicon 17:1–9. https://doi.org/10.1007/s12633-021-00990-z

    Google Scholar 

  37. Baehr-Jones T, Ding R, Liu Y, et al. (2012) Ultralow drive voltage silicon traveling-wave modulator. Opt express 20:12014–12020. https://doi.org/10.1364/OE.20.012014

    Article  CAS  Google Scholar 

  38. Dakin JP, Brown RG (2006) Handbook of Optoelectronics (two-volume set). CRC press, New York

    Book  Google Scholar 

  39. Binh L.N. (2015) Optical Multi-Bound Solitons. CRC Press, London

    Google Scholar 

  40. Lumerical software. https://www.lumerical.com/products/. Accessed 14 April 2021

  41. Witzens J (2018) High-speed silicon photonics modulators. Proc IEEE 106:2158–82. https://doi.org/10.1109/JPROC.2018.2877636

    Article  CAS  Google Scholar 

  42. Azadeh SS, Merget F, Romero-García S, et al. (2015) Low V π Silicon photonics modulators with highly linear epitaxially grown phase shifters. Opt Express 23:23526–23550. https://doi.org/10.1364/OE.23.023526

    Article  CAS  Google Scholar 

  43. Yu H, Bogaerts W, De Keersgieter A (2010) Optimization of ion implantation condition for depletion-type silicon optical modulators. IEEE J Quantum Electron 46:1763–8. https://doi.org/10.1109/JQE.2010.2067206

    Article  CAS  Google Scholar 

  44. Radhakrishnan S, Sugesh RGJ, et al. (2021) Numerical investigation on Ge2Sb2Te5-assisted reconfigurable asymmetric directional coupler-based switches. Opt Eng 60:055104. https://doi.org/10.1117/1.OE.60.5.055104

    Article  CAS  Google Scholar 

  45. Grosges T, Vial A, Barchiesi D (2005) Models of near-field spectroscopic studies: comparison between finite-element and finite-difference methods. Opt Express 13:8483–97. https://doi.org/10.1364/OPEX.13.008483

    Article  CAS  Google Scholar 

  46. Zhu Z, Brown TG (2002) Full-vectorial finite-difference analysis of microstructured optical fibers. Opt Express 10:853–864. https://doi.org/10.1364/OE.10.000853

    Article  Google Scholar 

  47. Lumerical Mesh Detail. Available: https://support.lumerical.com/hc/en-us/articles/360034382614/. Accessed 05 Sep 2021

  48. Lumerical Meshing for Mode solver. Available: https://support.lumerical.com/hc/en-us/articles/360034917233-MODE-Finite-Difference-Eigenmode-FDE-solver-introduction. Accessed 05 Sep 2021

Download references

Acknowledgements

This work was performed on Lumerical software provided by Vellore Institute of Technology, Chennai. The authors are grateful to the institution.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

The design proposal, simulation analysis and manuscript preparation are performed by Jesuwanth Sugesh R G guided by Sivasubramanian A.

Corresponding author

Correspondence to Jesuwanth Sugesh R.G..

Ethics declarations

The authors declare that all procedures followed were in accordance with the ethical standards.

Ethics approval and consent to participate

Authors declare no research involving human participants and/or animals was conducted. All authors are voluntarily participating for the submission of this research work.

Consent for Publication

Both the authors agree for the publication of the manuscript by the journal.

Conflict of Interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Availability of data and material

Data underlying the results presented in this paper are not publicly available at present but may be obtained from the authors upon reasonable request.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

R.G., J.S., A., S. High Modulation Efficient Silicon MZM with Core-based Split PN Junction Phase Shifter. Silicon 14, 7033–7041 (2022). https://doi.org/10.1007/s12633-021-01482-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01482-w

Keywords

Navigation